Damage Free and Energy Efficient Megasonic Cleaning

PIs:

- Srini Raghavan, Materials Science and Engineering, UA
- Manish Keswani, Materials Science and Engineering, UA

Graduate Students:

• Zhenxing Han: PhD candidate, Chemical and Environmental Engineering, UA

<u>Core Funding Source</u>:

• Intel (mentors: Gopal Rao and Avi Fuerst)

Cost Share:

- ERC (~ \$25k)
- IMEC: In kind donation of Patterned Wafers (~\$5k)

Overall Objective:

Energy reduction in Megasonic Cleaning Processes

Current Year Goal:

Development of a Chemical System for a Megasonic Cleaning Process that is able to achieve high particle removal efficiency (PRE) at low power density with significantly reduced feature damage

ESH Metrics and Impact

- 1. Cleaning formulations developed in this work use weakly alkaline pH (~8.2) to achieve effective particle removal as opposed to traditional cleaning formulations based on ammonium-peroxide mixtures (APM) that operate under more alkaline (pH > 10) conditions
- 2. Overall die/wafer yield improvement through reduction in feature damage by proper choice of cleaning chemicals and low transducer power density (energy)

Single Wafer MegPie[®] Set up for Cleaning and Damage Studies

- Frequency ~ 925 kHz
- Power density Range = $0.15 2.9 \text{ W/cm}^2$
 - Active megasonic surface area = 32.3 cm^2
 - Substrate to piezoelectric transducer distance ~ 1 mm

Procedure for Cleaning Study on Blanket Wafers

- 1. 8" oxide wafers pre-cleaned using dilute HF (1:100)
- 2. Silica particles (mean diameter ~200 nm) deposited on the wafer using spin deposition technique
- 3. ~4000 particles deposited per wafer and aged for 24 hr before cleaning
- 4. The contaminated oxide wafers cleaned in MegPie[®] under the following conditions:
 - Cleaning solution flow rate: 300 ml/min, wafer spin speed: 30 rpm.
 - Megasonic conditions: Power density: 0.7-1.0 W/cm², Exposure time: 40, 60 and 120 sec
- 5. Particle count measured using SP1 after deposition and cleaning

in the silica slurry

<u>Cleaning Results on Blanket Wafers Using NH₄OH</u> <u>and NH₄HCO₃/NH₄OH solutions at pH 8.2</u>

➤ In NH₄OH solution, 100 % PRE is achieved for investigated power densities (0.7 and 1.0 W/cm²) and megasonic exposure times (40, 60 and 120 sec)

➢ In NH₄HCO₃/NH₄OH solutions, slightly higher power density of 1.0 W/cm² and cleaning time of 60 sec is required to achieve 100 % PRE

Proper choice of power density and cleaning time yields a 100 % PRE in NH₄HCO₃/NH₄OH solution (at pH of ~ 8.2)

Procedure for Cleaning and Damage Study on Patterned Samples

- Patterned wafers (high-k-metal gate) obtained from IMEC. The A2 section (1.8 mm x 1.9 mm) in the structure, which consisted of lines with 40 nm width (measured by SEM) separated by 500 nm, used for characterization.
- Leica DM4000 M microscope used for imaging; 10 regions each of 0.3 mm x 0.4 mm area imaged at a magnification of 200X.
- The images were then processed using the ImageJ software. It was established earlier that by adjusting suitable threshold value to the image, it is capable to distinguish between particles and defects.

SEM showing multi-stack line on Si substrate

Effect of Power Density and Megasonic Exposure Time on Particle Removal and Feature Damage in NH₄OH and NH₄HCO₃/NH₄OH Solutions

≻High PRE achieved in both NH₄HCO₃/NH₄OH & NH₄OH systems at 1 W/cm² and 60 sec (meg exposure)

>Damage to thin lines much higher in NH_4OH solution (pH ~ 8.2) compared to that in NH_4HCO_3/NH_4OH solutions at pH 8.2 for 120 sec of meg exposure; Defect study in NH_4HCO_3/NH_4OH system at lower meg exposure time in progress

Current Status on the CT Cell-Spectrometer Assembly

A plano-convex lens (of diameter 3 cm) has been installed in the CT cell (opposite to the photomultiplier tube) to have better light collection efficiency

Tests are being conducted to determine light focusing and transmission capability of the optical set-up

Industrial Interactions and Technology Transfer

- Collaboration with ProSys, CA and technical discussions with Ocean Optics for design and construction of the optical set-up for integration of the spectrometer with the CT cell
- Filed an Invention Disclosure on 10/07/11 with University of Arizona on a novel chemical formulation developed for low damage and high PRE megasonic cleaning process. Ongoing discussions with Intel on filing a patent

Acknowledgements

- Dr. Sangita Kumari, Global Foundries, who worked during the first phase of the project
- Mark Beck and Eric Liebscher, ProSys, for help with modification of the CT cell and optical assembly

Future Plans

Next Year Plans

- Collect sonoluminescence spectra in ammonium bicarbonate based chemical system that has shown good cleaning with low feature damage
- Relate damage to high energy cavitation events during megasonic cleaning through spectral information

Publications, Presentations, and Recognitions/Awards

- S. Kumari, M. Keswani, S. Singh, M. Beck, E. Liebscher, L. Toan, and S. Raghavan, ECS Transactions, 41, 5, pp. 93-99 (2011)
- S. Kumari, M. Keswani, S. Singh, M. Beck, E. Liebscher, L. Toan, and S. Raghavan, Effect of Dissolved CO₂ in Deionized Water in Reducing Damage During Megasonic Cleaning in MegPie, 220th ECS Meeting, Boston, MA, (Oct 9-14, 2011)

Cost and Environmental Benefits of Biosorption of Copper from CMP Wastewater versus Ion Exchange

Lisa A. Jones, Dr. Kimberly Ogden, Mayrita Arrandale

Objective

Remove copper (Cu) from chemical mechanical planarization (CMP) wastewater with lipid extracted algae (LEA) from Chlorella protothecoides, a freshwater algae

Tribological, Thermal, and Kinetic Attributes of <u>300 vs. 450 mm CMP</u>

Senior Researchers:

- Ara Philipossian, Professor, PI
- Yun Zhuang, Postdoctoral Fellow
- Yasa Sampurno, Postdoctoral Fellow

Students

• Yubo Jiao, Xiaoyan Liao, and Changhong Wu, Ph. D. candidates, Chemical and Environmental Engineering, UA

Sponsored by:

- Intel
- Cabot Microelectronics
- Fujimi

Highlights:

We established 450-mm wafer processing capability and results showed that CMP consumable consumption can be reduced more than 20% through processing larger size (450 mm) wafers due to the associated higher material removal rate.

Aggressive Diamond Characterization and Wear Analysis during Chemical Mechanical Planarization

Senior Researchers:

- Ara Philipossian, Professor, PI
- Yun Zhuang, Postdoctoral Fellow
- Yasa Sampurno, Postdoctoral Fellow

Sponsored by:

Cabot Microelectronics

Students

• Changhong Wu, Yubo Jiao, and Xiaoyan Liao, Ph. D. candidates, Chemical and Environmental Engineering, UA

In this project, we aimed to extend pad conditioner life by identifying its aggressive diamonds and investigating aggressive diamond wear evolution during chemical mechanical planarization.