Environmental Safety and Health (ESH) Impacts of Emerging Nanoparticles and Byproducts from Semiconductor Manufacturing

Tasks 425.023 and 425.024

Jim A Field¹, Scott Boitano², Reyes Sierra¹ & Farhang Shadman¹

¹Dept. Chemical and Environmental Engineering ²Dept. of Physiology & Arizona Respiratory Center, The University of Arizona

Buddy Ratner

University of Washington Engineered Biomaterials Center, UWEB

Project Tasks

Task 1 NP Characterization

Pls

- F. Shadman
- B. Ratner
- R. Sierra

Students Jeff Rottman

R. Daneshvar L. Platt M. Rodriguez H. Wang

Other Scientists

Task 2

Toxicity Assessment & Prediction

Pls

- J. Field
- F. Shadman
- S. Boitano
- R. Sierra

Students

- Lila Otero
- I. Barbero
- A. Cuevas
- M. McCorkel
- C. Sherwood

Other Scientists

C Garcia

Goals for the Past Year

- Validation Real Time Cell Analyzer (RTCA)
 - NP oxidation of proteins
- NP impact on Sub-Lethal Cellular Effects: cell signaling (e.g. ATP signaling)

NP toxicity to well-differentiated mouse airway epithelial

Labeled NPs for Environmental Transport & Cellular Studies

Outline Presentation

Introduction

Dr. Jim Field

Cytoxicity (RTCA Validation)

Lila Otero, PhD Student

Sub-Lethal Cellular Effects

Dr. Cara Sherwood, former PhD student

- Environmental Transport NPs Jeff Rottman, PhD Student
- Summary and Conclusions

Dr. Jim Field

Application and Validation of a Real-Time Cell Analyzer to Assess Nanotoxicity

Lila Otero-González, Reyes Sierra, Jim A Field Dept. Chemical and Environmental Engineering University of Arizona

Real Time Cell Analysis

- Investigate the applicability of a new impedance-based real time cell analyzer (RTCA) system as a tool for **high-throughput** assessment of nanoparticle (NP) cytotoxicity.
- Compare the cytotoxicity results obtained using RTCA with those determined with a traditional toxicity assay, mitochondrial toxicity test (MTT).
- Characterize the aggregation of nanomaterials in the biological medium.

Real Time Cell Analyzer (RTCA)

Monitor Impedance Based Real Time Cell Assay (RTCA) with xCELLigence (Roche)

- RTCA system measures electrical impedance across interdigitated micro-electrodes integrated on the bottom of tissue culture E-Plates.
- Real time data output
- RTCA system does not need fluorescent labels.
- Does not target specific physiological process.

Real Time Cell Analyzer (RTCA)

- The presence of the cells on top of the electrodes leads to an increase in the electrode impedance.
- The impedance also depends on the quality of the cell attachment.

Chem. Res. Toxicol. 2005, 18, 154-161

Results – Exposure to SiO₂

Nano-sized SiO_2 was inhibitory at concentrations above **200 mg/L**.

<u>**Results – Exposure to Al_2O_3**</u>

Example Output RTCA with Al₂O₃ NPs

Methodology

Concentration (mg/L)

Cell-free controls with the highest NP level caused a marginal increase of the absorbance relative to the NPs-free control (2-3% of max. absorbance, depending on the NP used).

Comparison RTCA vs. MTT Results

SiO₂ nanoparticles

Comparison RTCA vs. MTT Results

Good correlation between RTCA and MTT results

- The RTCA assay is a suitable technique for rapid screening of cytotoxicity of NPs.
- The inhibitory concentrations determined with RTCA technique correlated well with those obtained by a commonly used cytotoxicity assay (MTT).

Beyond cytotoxicity: cellular effects of HfO₂

- Cell death is the end point for toxicity testing
- Detrimental cellular effects can occur in the absence of cell death
 - Cell transformation e.g., Cancer
 - Loss of ability to respond to cellular signals or stress
- Are there adverse effects in lung epithelial cells from ENPs (HfO₂) exposure in the absence of cell death?
- We used a high-throughput physiological assay to evaluate low-dose ENP exposure on cellular signaling mechanisms in airway epithelial cells
 - We initiated signaling with ATP
 - We measured signaling with RTCA

- 24-hr incubation with low-dose ENP HfO_2 reduces physiologic response to ATP:
 - P <0.05 at 100 μM ATP (0 vs. 50 and 250 ppm)
 - P <0.05 at 30,10, and 3 μM ATP (0 vs. 250 ppm)

Mechanistic Studies: Quantification of Ca²⁺ signaling

• ATP-induced Ca²⁺ responses in individual cells

- ENP-induced "signaling toxicity" occurs at ~1/10 of cytotoxicity levels
- Micron-sized HfO₂ did cause significant signaling toxicity

Effects of HfO₂ on Ca²⁺ signaling: surface area vs. signaling

- HfO₂ Ca²⁺ signaling reductions display a logarithmic function with the surface area of particles presented
- HfO₂ Ca²⁺ signaling reductions are due to metals toxicity more than particle size

Ca²⁺ Imaging to compare other ENPs: SiO2 and CeO2

- Nano-SiO2 reduced Ca²⁺ signal; micronsized was not reduced
- CeO2 reduced signaling was more prevalent in ENP compared to micron-sized

ENP exposure and barrier function

- Cultured primary mouse tracheal epithelial cells
- Exposed stable monolayers to ENP and micron-sized HfO2 particles

• HfO2 does not appear to alter transepithelial resistance significantly

Nanoparticle Retention in Porous Media

Objective

• Investigate the role of porous media in the treatment of wastewater containing nanoparticles

Method of Approach

- Develop a technique to rapidly determine NP behavior in porous media.
- Test and select filtration materials that would be suitable for effective removal of NP from water and wastewater
- Develop a process model for data analysis, scale up, and process design.

Online Retention Measurement

- Novel apparatus allows for fully online measurement of nanoparticle retention.
- The system is flexible in that it can also be configured to determine retention for other systems/techniques.

Media Comparison

• Activated carbon (AC) shows marked improvement over sand regarding NP retention.

 Diatomaceous earth (DE) displays real promise as an adsorbent bed media, showing significant improvement in NP capture capacity.

Fluorescent Nanoparticles

- Able to synthesize fluorescent nanoparticles of varying sizes
- Enables determination of "nano" effect in treatment techniques as well as toxicity.

Process Simulation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial z^2} - U \frac{\partial C}{\partial z} - \frac{3(1-\varepsilon)}{\varepsilon} \frac{\partial C_s}{\partial t}$$

$$\frac{\partial C_s}{\partial t} = \left[\alpha_{pc}(1-\Theta) + \alpha_{pp}\Theta\right]k_a C - k_d C_s$$

Continued refinements to the process model allows more accurate predictions of NP behavior in porous media.

Conclusions

- Novel online measurement allows for rapid determination of media suitability as well as sensitivity to bed and solution characteristics.
- Fluorescent silica NPs enable true size comparison and act as accurate tracers.
- The continued modeling work will provide the basis for scale-up of developed treatment strategies.

Bed Integration

Proposed Design

A hybrid bed design provides the strengths of each sorbent in a simple, easily implemented design.

Main Achievements: Physical Characterization

University Arizona

- <u>Aggregation</u> inorganic NPs (except SiO₂) in culture media
- Protocols for dispersing NPs in medium (protein, surfactant)
 - NPs adsorb other contaminants
- Porous media suited for <u>filtering NP (</u>diatomaceous earth)
 - Transport model
- Mastered synthesis of fluorescent dye <u>labeled NPs</u>

Main Achievements: Physical Characterization

University of Washington

- Surface characterization HfO₂ and CeO₂ with XPS and ToF-SIMS
 - Principal Component Analyses of Surface Contamination
 - SEM characterization NPs in biological medium
- Methods of sterilizing NPs (without altering physical properties)

Main Achievements: Toxicity

University Arizona

- Developed <u>Chemical ROS</u> and <u>Protein oxidation</u> assays for NP
- Adapted RTCA for evaluating NP toxicity
- Validated <u>RTCA</u> for NP toxicity measurements
- Developed methods for evaluating <u>sub-lethal cellular effects</u> (cell signaling effects)
- Advanced tissue culture for lung epithelial barrier function
- Demonstrated that NPs used in CMP (SiO₂, Al₂O₃, CeO₂) or proposed for photolithography (HfO₂) have <u>low to moderate</u> <u>toxicity</u>

Main Achievements: Toxicity (continued)

University Arizona

- Media matters. Medium composition impacts NP cytotoxicity (CeO_2, Al_2O_3)
- Soluble metal release to medium (dissolution, corrosion) is an important mechanism for the most toxic NPs (Cu⁰, CuO, Mn₂O₃, Ag⁰, ZnO)
- NPs that are positive in <u>ROS</u> assay or protein oxidation assay tend to be NPs with high to moderate toxicity (Cu⁰, CuO, Mn₂O₃, Fe⁰, CeO₂)

Main Achievements: Journal Publications

Five Publications already published

- Luna-Velasco A, Field JA, Cobo-Curiel A, Sierra-Alvarez R. 2011. Inorganic nanoparticles enhance the production of reactive oxygen species (ROS) during the autoxidation of L-3,4-dihydroxyphenylalanine (L-Dopa). J. Haz. Mat. 82:19-25.
- 2. Garcia-Saucedo C, Field JA, Otero L, Sierra-Alvarez R. 2011. Toxicity of HfO₂, SiO₂, Al₂O₃ and CeO₂ nanoparticles to the yeast, *Saccharomyces cerevisiae*. J. Haz. Mat. 192:1572–1579.
- 3. Wang H, Yao J., Shadman F. 2011. Characterization of the surface properties of nanoparticles used in semiconductor manufacturing. *Chemical Eng, Sci.* 55, 2545.
- 4. Field JA, Luna-Velasco A, Boitano SA, Shadman F, Ratner BD, Barnes C, <u>Sierra-Alvarez R.</u> 2011. Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles. *Chemosphere*. 84(10):1401-1407.
- Gomez-Rivera F, Field JA, Brown D, Sierra-Alvarez R. 2011. Fate of cerium dioxide (CeO₂) nanoparticles in municipal wastewater during activated sludge treatment. *Bioresource Technol*. (In press). <u>http://dx.doi.org/10.1016/j.biortech.2011.12.113</u>

Journal Publications (continued)

Three publications pending review

- 6. Rottman, J., Shadman, F., Sierra-Alvarez, R. 2012. Interactions of Inorganic Oxide Nanoparticles with Sewage Biosolids. *Water Sci. Technol. (Under review)*.
- 7. Rodríguez, M., Sierra-Alvarez, R., Field, J. A., Shadman, F. 2012. Impact of Wastewater Components on the Aggregation Behavior of Nanoparticles in Chemomechanical Planarization (CMP) Slurries. (*Under Review*)
- 8. Otero-Gonzalez, L., Field JA, Sierra-Alvarez, R. 2012. Application and validation of an impedance based real time cell analyzer to measure the toxicity of nanoparticles impacting 16HBE140- lung epithelial cells. Environ. Sci. Technol. (*Under review*)

Three publications un preparation

- 9. Luna-Velasco, A., Cobo, A., Field, JA, Sierra-Alvarez, R. 2012. Inhibitory effect of inorganic oxide nanoparticles towards the bioluminescent bacterium *V. fisheri. (In preparation).*
- 10. Luna-Velasco, A., Sun, A., Sierra-Alvarez, R., Field, JA. 2012. Direct oxidation of proteins by inorganic nanoparticles. (*In preparation*).
- 11. Garcia-Saucedo, C., Otero-Garcia, L., Field JA, Sierra-Alvarez, R. 2012. Cytotoxicity of inorganic oxide nanoparticles to the yeast, *Saccharomyces cerevisiae*. (*in preparation*)

Main Achievements: Overview

