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Wen Zhang, Ying Yao, Nicole Sullivan, and Yongsheng Chen. Environ. Sci. Technol.  2011 

Stephen Klaine, et al. Environ. Toxicol. Chem. 2008 

Method and Approach 

 Investigate the ion release (e.g. Ag NPs)  

 Model ion release kinetics on the basis 

of hard sphere collision theory  

 Perform study on aggregation 

kinetics of NPs 

 Model the aggregation of NPs 

with extended Derjaguin–

Landau–Verwey–Overbeek 

(EDLVO) theory 

 Investigate the toxicity of NPs 

to Paramecium 

 Correlate the NP toxicity with 

NP-cell surface interactions 

 Use model cell membranes to 

study the NP adsorption and 

membrane disruption, as 

predictor of bioaccumulation 

and toxicity  

H2O, 

O2

OH, 

 O2
-

 

Nanoparticle

 Perform study on ROS production 

 Explore ROS-production mechanism 

with band gap theory 

 Correlate the NP antibacterial activity 

with ROS production capability   
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Highlight of Results 

1. ROS production by NPs and correlation with their 

antibacterial activity 
 

2. Aggregation kinetics of NPs in aqueous solution; 
 

3. Acute toxicity of engineered metal oxide NPs to 

paramecium 
 

4. Using model cell membranes as predictor of 

bioaccumulation and toxicity 
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1.1. Cytotoxic implication of ROS production by NPs 

• High surface area of NPs provides more reactive sites for ROS 

production 

• ROS formed in NP suspension usually consist of superoxide 

radical (O2
•−), hydroxyl radicals (•OH), and singlet oxygen (1O2) 

• Representative reaction stochiometry (TiO2 as an example): 

Implications: 

Oxidant injury of cells, lipid 

peroxidation, enzyme or 

protein oxidation, membrane 

pitting, changes in membrane 

permeability, etc.  
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•− only. 

Al2O3 NPs were found to produce 1O2 only. 

1.2. ROS measurement results with indicator method 

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen. Mechanism of 

Photogenerated Reactive Oxygen Species and Correlation with Antibacterial 

Properties of Engineered Metal Oxide Nanoparticles. ACS Nano. Submitted  

 

Table 1. Concentrations of ROS generated by 

different metal oxides under UV irradiation. 

N.D. indicates that ROS were not detected or were not statistically significant.  
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 Electrons jumping from the 

valence band to the conduction 

band will form holes and free 

electrons.  

 

 The hole and free electron 

have strong oxidizing and 

reducing power, respectively. 

 

 Compare the band edge energy 

levels of the metal oxides with the 

redox potentials. 

1.3. ROS production mechanism 

Grätzel, M. Nature 2001, 414. 

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen. Mechanism of Photogenerated 

Reactive Oxygen Species and Correlation with Antibacterial Properties of Engineered Metal 

Oxide Nanoparticles ACS Nano. Submitted 
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NPs which produce higher level ROS killed more E.coli cells   

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with 

Antibacterial Properties of Engineered Metal Oxide Nanoparticles ACS Nano. Submitted 

1.4. ROS production correlates with antibacterial activity 

of NPs 
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2.1. Ionic strength effect on aggregation kinetics of NPs  

Lines are predictions 

Kungang Li, Wen Zhang, Ying Huang, Yongsheng Chen. J. Nanoparticle. Res. 2011 

KCl 

Reaction-

limited 

(“slow”) 

Diffusion-

limited 

(“fast”) 
CeO2 NPs 

34 mM 

9.5 mM 
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2.2. Natural organic matter (NOM) effect on 

aggregation kinetics of NPs  
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Kungang Li and Yongsheng Chen. J. Hazard. Mater. 2012 
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          The adsorption of NOM 

molecules on NP surface 

will: 

 Change the vdW, AB, and 

EL interactions 

 Introduce new interactions 

(e.g., steric and polymer 

bridging)  
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Wen Zhang, John Crittenden, Kungang Li, Yongsheng Chen. Environ. Sci. Technol. 2012 

2.3. New attachment efficiency model on the basis of 

Maxwell-Boltzmann distribution 
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Conventional attachment efficiency equation 

Limitation: neglecting Brownian motion or 

kinetic energy of NPs 

 

New attachment efficiency equation  
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The white area shows the proportion of 

particles in the sample that do not have 

enough energy to aggregate

The blue area shows the 

proportion of particles in 

the sample that have 

enough energy to overcome 

the energy barrier

Energy barrier, Eb
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3.1. Acute toxicity results of NPs to paramecium 

Untreated 

Paramecium 

CuO NPs-treated 

Paramecium 

SiO2 NPs-treated 

Paramecium 

48-h LC50 acute toxicity test results 
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Metal oxide NPs 48-h LC50 (mg/L) 
95% confidence intervals 

(mg/L) 

nFe2O3 0.81 0.601.09 

nCuO 0.98 0.841.25 

nSiO2 442.6 337.0559.8 

nZnO 573.8 448.6707.9 

nCeO2 1832.5 1739.91925.1 

nTiO2 7215.2 3730.138142.7 

nAl2O3 9269.2 4783.135409.6 
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3.2. NP-cell interaction correlates with NP toxicity to 

paramecium 
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3.3. NP-cell interaction correlates with NP toxicity to 

paramecium 

 Interaction energy barrier is well 

correlated with the acute toxicity of NPs 

 Low energy barrier implies stronger 

NP-cell association and thus more damage 

to the cell 

 NP-cell surface interaction plays an 

important role in the cytotoxicity of NPs. 
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4.1. Using model cell membranes as predictor of 

bioaccumulation and toxicity. 

Nanoparticles can have wide range of interactions with lipid bilayers that make up cell 

membranes (e.g.  adsorption, partitioning, translocation, penetration, disruption) 

A. Negoda1, Y. Liu1, W-C Hou, C. Corredor, B.Y. Moghadam, C. Musolff, L. Li, W. W, P. Westerhoff, A.J. Mason, P. Duxbury, J.D. Posner, R.M. Worden.. 

Int. J. of Biomedical Nanoscience and Nanotechnology, submitted. 

B.Y. Moghadam, W.C. Hou, C. Corredor, P Westerhoff, J.D. Posner. 2012. ACS Nano, Submitted. 

C. Corredor, W-C Hou, S.A. Klein, B.Y. Moghadam, M. Goryll, P. Westerhoff, J.D. Posner. 2012. ACS Nano, Submitted. 

W-C. Hou, B.Y. Moghadam C. Corredor, P. Westerhoff, J.D. Posner. 2012. Environmental Science and Technology, 46 (3), 1869–1876  

W-C. Hou, B.Y. Moghadam, P.K. Westerhoff & J.D. Posner. 2011. Langmuir, 27(19), 11899–11905 

K.D. Hristovski, P Westerhoff, J.D. POSNER. 2011. J. Envir. Sci. and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 46, 636-

647. 
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4.2. Adsorption to lipid bilayers as predictor for toxicity and 

bioaccumulation 

W-C. Hou, B.Y. Moghadam C. Corredor, P. Westerhoff, J.D. Posner. 2012. Environmental Science and Technology, 46 

(3), 1869–1876  

W-C. Hou, B.Y. Moghadam, P.K. Westerhoff & J.D. Posner. 2011. Langmuir, 27(19), 11899–11905 

K.D. Hristovski, P Westerhoff, J.D. POSNER. 2011. J. Envir. Sci. and Health Part a-Toxic/Hazardous Substances & 

Envir. Eng., 46, 636-647. 

Adsorption rate of tannic acid coated Au NPs 

(9 mg/L) to DOPC bilayers. 

•   Small particles adsorb faster but to a lesser 

extent.   

• Adsorption reaches some steady state 

(unsaturated <3% coverage) value  in less 

than 10 hours.   

• Why do particles stop adsorbing? 

Steady state lipid bilayer-water distribution 

of tannic acid Au NP at pH 7.4, indicating 

the distribution based on number 

concentration.   

• All data falls on single line K=450 L/kg.    

• Data suggests that number density is 

correct dosimetry, but designing 

experiments with equivalent number 

density can be difficult when size is 

varied. 
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Interpretation of adsorption results depend 

on dosimetry choice.  Single set of 

experiments suggest different outcomes 

based on presentation of dosimetry. 

SEM images of Au NP 

on bilayer surface.   

Shows low coverage 

and isolated particles. 
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4.3. Adsorption to lipids correlates to bioaccumulation 

in aquatic organisms. 

Preliminary data suggests that lipid bilayers 

can be used as a surrogate for predicting 

bioaccumulation in aquatic organisms. This is 

analagous to octanol-water partitioning 

approaches for molecular compounds. 

Negoda1, Y. Liu1, W-C Hou, C. Corredor, B.Y. Moghadam, C. Musolff, L. Li, W. W, P. Westerhoff, A.J. Mason, P. Duxbury, J.D. Posner, R.M. Worden.. Int. J. of Biomedical Nanoscience and 

Nanotechnology, submitted. 

W-C. Hou, B.Y. Moghadam, P.K. Westerhoff & J.D. Posner. 2011. Langmuir, 27(19), 11899–11905 

Organisms 

Lipids 

NPs accumulate in organisms.   Single-walled carbon 

nanotubes accumulated in Daphnia magna. (Roberts et 

al., ES&T, 2007) 
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B.Y. Moghadam, W.C. Hou, C. Corredor, P Westerhoff, J.D. Posner. 2012. ACS Nano, Submitted. 

C. Corredor, W-C Hou, S.A. Klein, B.Y. Moghadam, M. Goryll, P. Westerhoff, J.D. Posner. 2012. ACS Nano, Submitted. 

Particle/lipid mass ratio  

0.005 (♦)  Melittin 

0.02 (■)  Au NP(+) 

0.015 (□)  Au NP(+) 

0.005 (●)  Au NP(+) 

0.002 (○)  Au NP(+) 

0.02 (▲)   Au NP(-) 

0.02 (Δ)  Au NPs(PVP)  

control  (×). 

4.4. Nanoparticle disruption of model cell membranes 

• NP induce leakage in liposomes 

exponentially over several hours.   

• Can be fit with simple first order 

reaction model. 

• Leakage increases with dosage.   

• Positively charged NP induce faster 

leakage than negatively charged ones. 

L
(t

) 

Au NP (+) 

melittin 

• Leakage as function of normalized 

concentration (number of particles per 

number of liposomes) shows sigmoidal 

behavior analogous to toxicity.  

• Only one Au(+) NP is required per 

liposome to induce complete leakage. 

• NP are more effective than melittin in 

disrupting bilayer (per particle) 

• Leakage is strongly correlated with 

surface functionality 

• Positive particles induce more leakage 

than negatively charged ones. 

TEM confirming 1 particle per liposome 
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Conclusions 

1. ROS production by NPs 

 Al2O3 NPs were found to produce 1O2 only, and CeO2 NPs produced O2
•− only. 

 Energy band structures of metal oxide NPs could interpret the ROS production. 

 NPs with a greater ROS production capability killed more E.coli cells. 

2. Aggregation of NPs 

 Non-DLVO interactions must be included for describing NP aggregation. 

 Brownian motion is important for NP behavior in solution. 

3. Toxicity of NPs to paramecium 

 CuO and Fe2O3 are very toxic, while TiO2 and Al2O3 NPs are essentially non-toxic. 

 NP-cell interaction plays an important role in NPs’ toxicity to paramecium. 

4. Model cell membranes as predictor of bioaccumulation and toxicity 

 Smaller Au NPs distribute onto lipid bilayers more rapidly than larger ones. 

 Lipid bilayer-water distribution coefficient for Au NPs is 450 L/kg lipid.  

 Lipid bilayer-water distribution is a potential method for assessing the 

bioaccumulation potentials of NPs. 

 Positive NPs induce more leakage in liposomes than negatively charged ones. 

 Only one Au(+) NP is required per liposome to induce complete leakage. 
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