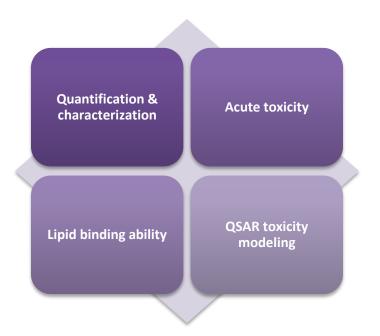
CONSORTIUM OF NANO-EH&S PROJECTS COORDINATED ACTIVITIES

Arizona State University Colorado School of Mines Johns Hopkins University North Carolina A&T University of Arizona University of North Carolina University of Texas - Dallas

Consortium of Nano-EH&S Projects Coordinated Activities

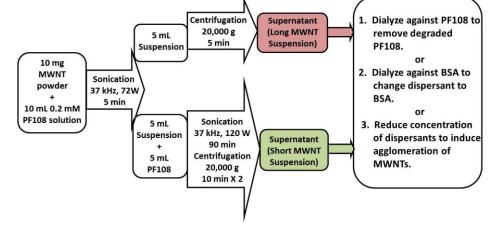
• Goal:


 Identify and conduct experiments using a common set of nanomaterials across all platforms of five funded EH&S projects to demonstrate how each supports differentiation of nanomaterial impacts

• Approach:

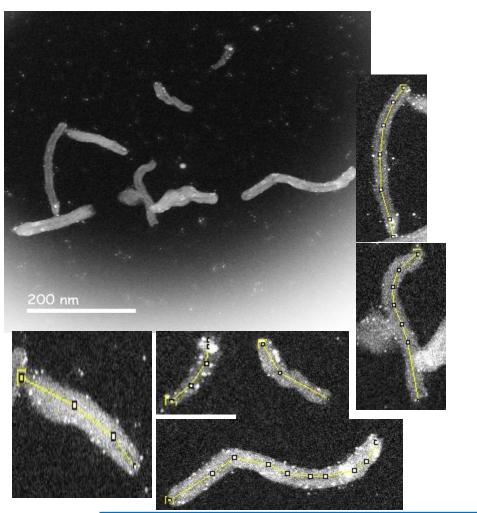
- As a group agree upon nanomaterials to study based upon the ability to address a fundamental question(s)
- Conduct measurements in individual laboratories
- Develop a framework for assessing and minimizing nanomaterial "hazard"

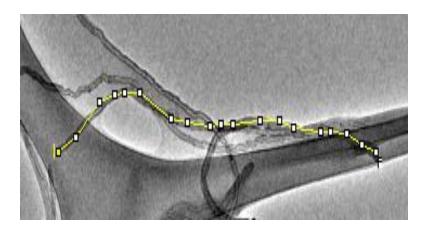
• Results:

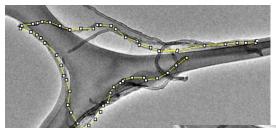

- Preliminary nanomaterial selection includse 2 sizes of CNTs
- Working question: "Can each of the platforms funded under EH&S differentiate responses, impacts, or quantification of the four selected nanomaterials?"

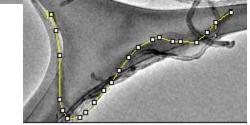
Core assessment or measurement capabilities of the funded EH&S consortium researchers

Preparation of MWCNTs (UT-D)

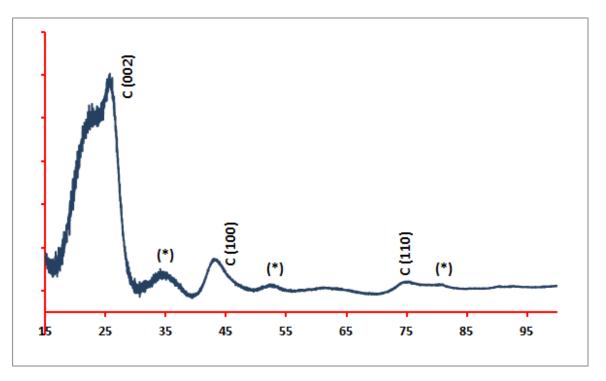

- Two sizes of MWCNTs were prepared by sonication and separation
- Entire procedure done under sterile conditions so final MWCNTs can be used with in vitro cell culture assays.
- Coated with pluronics to make stable in water
- Provided supplies to rest of consortium for testing


Sonication, Centrifugation, and Dialysis


Characterization of CNTs (ASU)


Shorter CNTs = 159 ± 72 nm

Longer CNTs = 2,180 ± 1,225 nm



Characterization of MWCNTs (NC A&T / UNC-G)

- X-ray diffraction (XRD) patterns were measured with a Oxford Gemini X-Ray Diffractometer with Cu Kα radiation (I = 1.5418 Å)
- A graphite like peak (002) is observed along with a family of carbon peaks due to honeycomb lattice of single graphene sheet

XRD of MWNT containing powder. (*) are metal oxides

Characterization of MWCNTs (NC A&T / UNC-G)

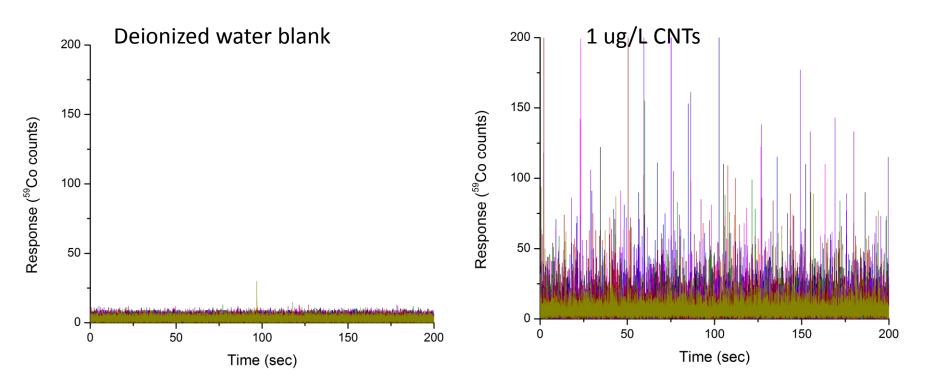
- North Carolina A&T/UT-Dallas consortium work
- Varian 710 ES ICP Axial Spectrometer Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to measure metal impurity content in the as-obtained samples
- DI Water used as control showed no impurities

% impurity in MWVNT containing powder as measured in ICP-OES

Element	% content
Ni	0.03-0.15
Fe	0.01
Si	0.01-0.07
Al	Nil

We will continue to characterize
the starting material to
understand its size, distribution,
structure and composition using
techniques such <u>Raman</u>
<u>Spectroscopy, Nanoparticle</u>
<u>Tracking Analysis and</u>
Thermogravimetric Analysis

Characterization of CNTs (CSM)


- Catalytic elements used in CNT growth and are typical metallic contaminants are shown above.
- CNT can be detected and counted using spICPMS
 - Metallic impurities are detected by the MS
 - Pulses of ions from the CNTs are counted

Eleme nt	Short CNT conc. (ppb)	Long CNT conc. (ppb)
Y	0.033	0.0167
Мо	1.717	1.363
Со	0.090	0.076
Ni	1.152	1.145

Reed et al, 2013

Characterization of CNTs (CSM)

- Preliminary Data collected using ⁵⁹Co in Southwest Nanotechnologies CNTs
- Work with consortium CNTs just beginning

Most frequent literature terms associated with carbon nanotubes

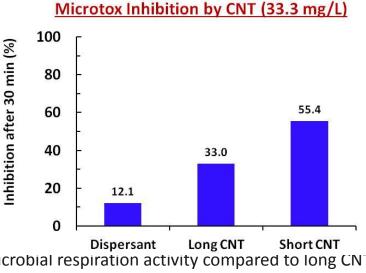
retrieved by Chemotext (UNC)

Terms	Number of assertions	Terms	Number of assertions
Cell Survival	112	Lymph Nodes	9
Lung	102	T-Lymphocytes	9
Particle Size	62	Biological Transport	8
Oxidative Stress	58	Chromosome Aberrations	8
Cell Proliferation	46 Neutrophils		8
Apoptosis	45		
Time Factors	35	Signal Transduction	8
Macrophages @	29	Skin	8
Surface Properties	29	Kidney	7
DNA Damage	28	Light	7
Tissue Distribution	25	Lymphocytes	7
Oxidation-Reduction	24	Molecular Structure	7
Liver	23	Organ Size	7
Macrophages, Alveolar @	14	Pleura	7
рН	13	Hydrophobic and Hydrophilic Interactions	6
Lipid Peroxidation	12	Lethal Dose 50	6
Phagocytosis @	12	Organ Specificity	6
Solubility	12	Pregnancy	6
Gene Expression	11	Protein Binding	6
Respiratory Mucosa	11	Trachea	6
Adsorption	10	Brain	5
Body Weight	10	Membrane Potential, Mitochondrial	5
Kinetics	10	Metabolic Clearance Rate	5
	4.0		

Cytotoxicity and immune toxicity assays are widely used when assessing ESH for carbon nanotubes. DNA damage impacting cell survival or inducing cell proliferation is clearly noticed in literature.

Microbial Inhibition by MWCNTs (UofA)

Testing methodology: Microtox assay

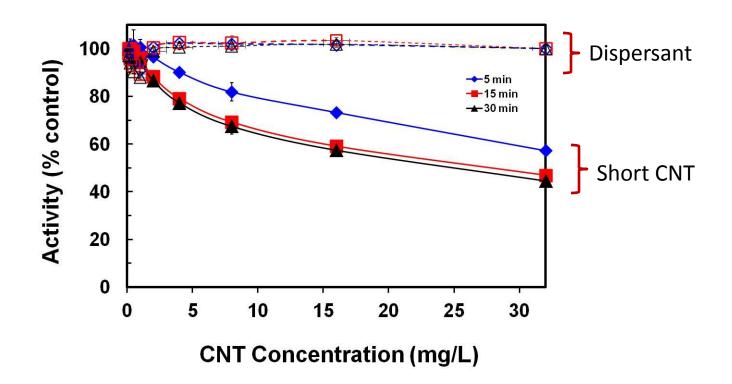

Marine bioluminescent bacterium Vibrio fischeri

NPs dosing

Inhibition leads to decrease in bioluminescence

10

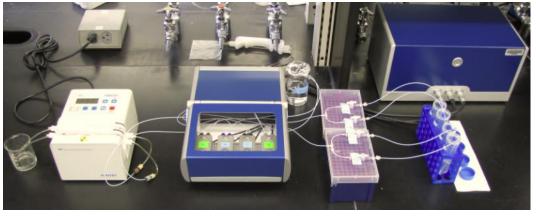
- Widely used assay; large database of Microtox values facilitates comparison with other chemicals.
- Microtox inhibition generally shows good correlation with aquatic toxicity (algae, fish).



- Short CNT more inhibitory to microbial respiration activity compared to long CNT. Long CNT IC_{50} = 27.9 mg/L.

- The dispersant used to stabilize the MWCNT caused very low inhibition.

University of Arizona Microbial Inhibition by MWCNTs

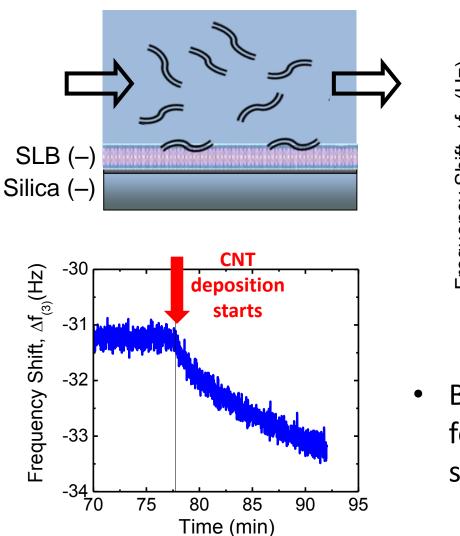

Microtox Inhibition Assay with Short MWCNT

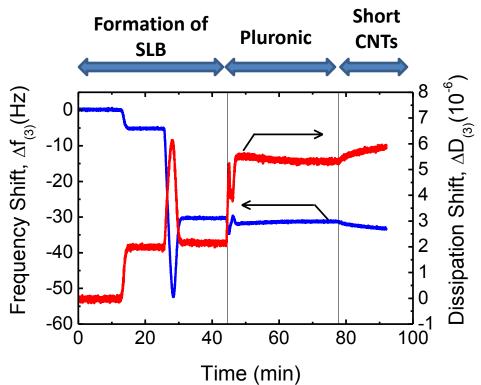
- The inhibitory impact of the short MWCNT increased with exposure time (up to 15 min)

Binding of CNTs to Model Cell Membranes (JHU)

Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D)

	with QCM-D
•	Both short and long
	CNTs were determined
CNTs	to be negatively
4	charged in Pluronic
	F108 solution
00	


Propensity of CNTs to


membranes evaluated

bind to model cell

	Short CNTs	Long CNTs
Hydrodynamic Diameter (nm)	72	134
Electrophoretic Mobility (10 ⁻⁸ m ² /Vs)	-0.68	-1.00

Binding of CNTs to Model Cell Membranes

 Both short and long CNTs were found to bind to zwitterionic DOPC supported lipid bilayers (SLBs)

Conclusions

- Consortium has monthly conference calls
- Selected MWCNT (short-/long-) to answer question can our groups detect differences associated with length?
- Succeeded with material exchange between universities; addressed impurity concerns
- Built confidence in working with each other
- Provided cross-validated analytical data on MWCNTs
- Will complete MWCNT (short-/long-) work
- Wants consortium to approach nanoparticles in CMP & use "real" NP solutions representing CMP fluids