## <u>Novel Methods for Reducing</u> <u>UHP Gas Usage in Fabs</u>

**Customized Project; Sponsored by Intel** 

Co- PIs:

- Farhang Shadman, Chem and Environ Eng, UA
- Carl Geisert, Sr. Principal Engineer, Intel

**Graduate Students:** 

- Roy Dittler: Ph.D. student, Chem and Environ Eng, UA (Internship at Intel)
- Hao Wang: Ph.D. student, Chem and Environ Eng, UA (Internship at ASM)
- Jivaan Jhothiraman: Ph.D. student, Chem and Environ Eng, UA

**Undergraduate Students:** 

• Jeffrey Tsay, Chem and Environ Eng, UA

### **Objectives**

- Develop techniques for reducing contamination and lowering UHP gas usage in fabs:
  - Subtask 1: Analysis of "back diffusion" as a major source of contamination
  - Subtask 2: Novel purge methods to remove contaminants during steady operation, start-ups, or recovery from system upsets.

### **Motivation and ESH Impact**

• Contamination of gas distribution systems during operation or at start-up results in major wasting of materials, energy, and valuable tool operation time.

#### **Subtask 1: Back Diffusion**



# **Experimental Testbed**

Laterals Added to the Main Line



Gas distribution systems with different sizes and<br/>geometries were fabricated and provided by IntelCRL<br/>APII

CRDS: high ppt – low ppm APIMS: low ppt – low ppb Multistage Gas Purifier System

#### **Back Diffusion Process Simulator**

**Convective Flux** 

$$J_c = -U_3 C_g$$

**Gas Phase Dispersive Flux** 

$$J = -D\frac{dC_g}{dz}$$

Surface Diffusive Flux

$$J_s = -D_s \frac{dC_s}{dz} - D_s \frac{k_a}{k_d} \frac{dC_g}{dz}$$

**Total Dispersive Mass Flow Rate**  $\pi r^2 I_e = \pi r^2 I + 2\pi r I_s$ 

**Effective Dispersion Coefficient** 

$$D_e = D + \frac{2}{r} D_s K_e$$







## **Process Simulator Verification**

#### **Simulator Prediction**



SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing



SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

#### **Parametric Studies**

**Effect of Flow Rate and Orifice Diameter on Gas Phase Moisture** 0.16 Tool 1 Vent Vent Tool 2 Vent 0.14 Gas phase moisture concentration, Cg (ppb) **Target Concentration:** 0.12 Tool 2 T **Target Concentration:** 0.10 Tool 1 400 micron & 8 LPM 0.08 100 micron & 0.9 LPM Increasing orifice diameter ncreasing flow rate 0.06 0.04 **Passes Purity Achieves purity** requirements with Requirements an order of 0.02 magnitude less gas!! 0.00 2 3 6 7 8 9 10 0 1 Δ 5 Position in main, x (m) SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 8

#### **Subtask 2: Novel ESH-Friendly Purge Methods**



#### **Comprehensive Purge Simulator**

#### **Continuity equation:**

**Navier–Stokes equation:** 

| $\partial P$ | $-\underline{P}\frac{\partial u}{\partial u}$ | $\partial P$              | $\partial u$ | - RT | $\partial P$ | $u \frac{\partial u}{\partial u}$ |
|--------------|-----------------------------------------------|---------------------------|--------------|------|--------------|-----------------------------------|
| $\partial t$ | $=-1 \frac{1}{\partial x} - \iota$            | $i \overline{\partial x}$ | $\partial t$ | -PM  | $\partial x$ | $u \overline{\partial x}$         |

#### Moisture concentration in the gas phase:

$$\frac{\partial C_g}{\partial t} = \frac{1}{\partial x} (D_L \frac{\partial C_g}{\partial x}) - \frac{1}{\partial x} (uC_g) + \frac{4}{d} \left[ (k_d C_S - k_a C_g (S_0 - C_S) \right]$$

Diffusion Convection Adsorption and desorption

#### Moisture concentration on the pipe surface:



### **Simulator Verification**

EPSS pipe with 1.5 inch OD and 76 inch length. Initial moisture conc. : 350 ppb



The process simulator well predicts combination of conventional and cyclic purge processes

#### **Simulator Verification**



SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

12

#### **Comparison of SSP and PCP**



#### **ESH/Cost Impact:**

#### **Gas Usage and Purge Time Reduction by PCP Process**



#### **System Size Effect**

- The relative purge gas reduction increases with the surface cleanup.
- PCP advantage is greater for larger systems.

#### **Industrial Scale Purge Study**

500 ft Main Section 50 ft Branches x 5

#### **PCP Advantage for Purging Networks**



#### **Summary and Conclusions**

- A method is developed to study contamination back diffusion in gas distribution systems; last year's focus on comparison of flow restrictors options (pigtails, valves, and orifices).
- Developed robust pressure cyclic purge (PCP) methods for complex systems with multiple branches.
- PCP reduces the down time and gas usage for purging gas distribution systems. The advantage is greater for larger networks with branches and stagnant volumes.
- Successful PCP requires proper (non-trivial) selection of operational parameters. Process simulation is needed to accomplish this task.
- Two versions of the process simulator are developed: comprehensive version for detailed research and simplified version for fab on-site usage.

## **Industrial Interactions and Future Plans**

- Continue joint work with Intel; some technology transfer and implementation of results at Intel fabs have already taken place.
- Prepare a user-friendly version of the process simulator available to industry
- Extend the present study to other fluids, contaminants, and components

## **Acknowledgements**

- Carl Geisert and Gopal Rao (Intel)
- Tiger Optics (major financial support and technical assistance)
- Junpin Yao (Matheson Tri-Gas)

### **Publications and Presentations**

- Hao Wang, Farhang Shadman, Effect of Particle Size on the Adsorption and Desorption Properties of Oxide Nanoparticles, AIChE, September, 2012.
- Hao Wang, Farhang Shadman, Effect of Particle Size on the ESH Properties of Nano-Materials, Presentation, SRC TECHCON, September 2012.
- Hao Wang, Roy Dittler, Farhang Shadman, Application of Pressure-Cycle Purge in Dry-down of Ultra-High-Purity Gas Distribution Systems, Presentation, ASM American Inc., Auguest 2012.
- Hao Wang, Farhang Shadman, Effect of Particle Size on the Adsorption and Desorption Properties of Oxide Nanoparticles, SRC ERC Teleconference, April, 2012.
- Roy Dittler, Hao Wang, Jivaan Jhothiraman, Carl Geisert, Farhang Shadman, Reducing Ultra-High-Purity (UHP) Gas Consumption By Characterization of Trace Contaminate Kinetric and Transport Behavior in UHP Fab Environments, SRC ERC Teleconference, November, 2012.
- Roy Dittler, Carl Geisert, Bulk Gas Distribution Dry Down Research, Intel Corp., August 2012.