Develop Externally Validated QNAR Models That Can be Reliabliy Used to Prioritize Nanoparticles for Biological and Safety Studies (425.045)

Development of Novel Descriptors

PIs:

- Alexander Tropsha, PhD (University of North Carolina at Chapel Hill)
- Denis Fourches, PhD (University of North Carolina at Chapel Hill)

Research Objectives

- Develop predictive QNAR models that correlate the compositional/physical/chemical/geometrical and biological descriptors of MNPs with known toxicological endpoints.
- Employ QNAR models for virtual screening of libraries of compound considered attachable to CNT surfaces to prioritize compounds for the experimental validation of predicted cellular toxicity and protein binding.
- In joint studies with experimental collaborators, evaluate the accuracy of QNAR models by testing the selected MNPs in biological experiments.

ESH Metrics and Impact

- **1.** Obtain reliable descriptors of the physical and chemical properties of manufactured nanoparticles.
- 2. Develop predictive computational models that correlate physical-chemical descriptors of MNPs with their toxic effects.
- **Impact:** Utilize the knowledge gained through above metrics for improved MNP experimental design and prioritized toxicity testing toward the manufacturing of safe nanomaterials.

Research Hypothesis

- The biological/toxicological properties of MNPs (exemplified by carbon nanotubes, CNTs) depend on the compositional/physical/chemical/ geometrical properties of the CNTs.
- Using physical/chemical characterization and toxicological screens for an ensemble of MNPs, it will be possible to develop and experimentally validate predictive Quantitative Nanostructure – Activity (QNAR) models.

Challenges in Modeling of Nanomaterials

S. Stern and S. McNeil, Toxicological Sciences, 101(1), 4-21, 2008.

- NP structures are very diverse → a real challenge to develop quantitative parameters (descriptors) of MNPs.
- Systematic physico-chemical, geometrical, structural and biological studies of NPs are nearly absent.
- Computational modeling of nanoparticles is only beginning to emerge; best if done in collaboration with experimental scientists.

Structure Representation in Cheminformatics

Н

Н

Н

Н

naphtalen-1-amine

Viewed by computers

Viewed by Viewed by chemists SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing another molecule

Molecular Fingerprints

bit string encodings of structural features and/or calculated molecular properties.

 2D Fragment-based, keyed fingerprints: each bit position monitors the presence or absence of structural fragments
MACCS (166 bits), BCI (e.g. 1,052 bits)

ALL PARTICLES HAVE THE SAME CORE BUT DIFFERENT SURFACE MODIFIERS

Classical molecular descriptors (e.g., Dragon, MOE, SiRMS) can be computed for a single molecule that represents the surface of a particular nanoparticle.

Computer-aided design of novel carbon nanotubes with desired biological properties

(in collaboration with Dr. Bing Yan, St. Jude Children's Research Hospital)

Average protein

binding (F0/F1)

Standard Deviation

Experiment

Predicted

CNTID

Average protein

binding (F0/F1)

Standard Deviation

Experiment

Predicted

1.77

0.05

n

0

II-31

3.40

0.03

1

1.78

0.06

0

0

II-32

2.28

0.05

1.87

0.02

0

0

II-33

2.04

0.08

1.76

0.03

0

0

II-34

2.22

0.01

1.82

0.02

0

0

II-35

2.17

0.04

2.30

0.02

II-36

2.95

0.00

1

1.74

0.02

0

0

II-37

2.08

0.02

2.00

0.01

II-38

2.25

0.06

1.67

0.06

0

0

II-39

2.65

0.05

2.33

0.02

11-9

2.24

0.11

1

1

ALL PARTICLES HAVE DIFFERENT CORES/ARCHITECTURES

MNP	CLIO	PNP	MION	QD	Feridex IV	Ferrum Hausmann
#. particle	23	19	4	3	1	1

Shaw et al., PNAS, 2008, 105, 7387-7392 If no available three-dimensional structures, only constitutional descriptors (e.g., number of metal atoms, presence/ absence of coated dextran) are computationally accessible.

Need of developing new

descriptors

Development of Quantum-Mechanics based fingerprints in collaboration with Dr. Stefano Curtarolo (Duke University)

New theoretical MNP descriptors: Computed

characteristics of materials*

									Valence		
									Band	Core	
		Atom	Fit Band					Mass	Width	Valence	Density
Index	▲ Name	Number	Gap (eV)	me(m0)	mmine(m0)	mh(m0)	mminh(m0)	ratio	(eV)	Gap (eV)	(g/cm3)
1	Al1La1O3	5	5.13	0.45	0.36	1.81	0.56	4.06	7.46	6.06	6.42
2	As1Ca3Cl3	7	3.39	0.64	0.34	0.52	0.24	1.24	1.36	1.62	2.63
3	As1Cl1Hg3O4	9	3.67	1.21	1.21	2.6	2.42	2.15	6.21	0.18	8.76
4	Ba1Ce1O3	5	4.9	2.54	1.81	3.69	0.3	1.45	3.15	8.17	6.44
5	Ba1F3Li1	5	9.68	0.63	0.51	12.87	0.8	20.52	2.31	6.27	5.25
6	Ba1O3Pr1	5	3.63	2.9	1.9	4.75	0.3	1.63	3.07	8.07	6.52
7	Ba1O3Zr1	5	5.01	0.69	0.37	2.92	0.9	4.2	3.64	6.75	6.28
8	Ba1Se1	2	2.55	0.55	0.23	0.67	0.19	1.23	3.06	7.49	6.57
9	Be1H3Na1	5	2.15	0.51	0.49	0.41	0.23	1.25	9.63	14.17	1.67
10	Bi1In1O3	5	1.22	0.26	0.22	11.71	0.35	44.78	7.13	2.87	8.37
11	Br1K3O1	5	2.11	0.38	0.37	2.35	0.55	6.27	0.92	2.62	2.5
12	Br1O1Rb3	5	1.46	0.34	0.33	2.13	0.41	6.35	1.07	2.66	3.58
13	Br3Cd1Cs1	5	2.35	0.19	0.18	6.39	0.28	34.39	5.55	0.78	5.32
14	C1K4O4	9	3.96	0.5	0.5	8.74	6.45	17.55	0.13	0.69	2.65
15	C1Li4O4	9	6.53	0.8	0.79	3.45	1.84	4.28	4.28	1.66	2.63
16	C1Na4O4	9	3.67	0.48	0.48	5.38	3.89	11.21	0.68	0.33	2.97

*data from aflowlib.org (collaboration with Prof. Stefano Curtarolo, Duke University)

New theoretical MNP descriptors: Materials

fingerprints

SR

									Valence	Core		
		Atom	Fit Band					Mass	Width	Valence	Density	Et a
Index	▲ Name	Number	Gap (eV)	me(m0)	mmine(m0)	mh(m0)	mminh(m0)	ratio	(eV)	Gap (eV)	(g/cm3)	ETC.
1	Al1La1O3	5	5.13	0.45	0.36	1.81	0.56	4.06	7.46	6.06	6.42	
2	As1Ca3Cl3	7	3.39	0.64	0.34	0.52	0.24	1.24	1.36	1.62	2.63	
3	As1Cl 304	9	3.67	1.21	1.21	2.6	2.42	2.15	6.21	0.18	8.76	
4	Ba1C 103	5	4.9	2.54	1.81	3.69	0.3	1.45	3.15	8.17	6.44	
5	Ba1FBLi1											
6	Ba1CBPr1	Λ	2 m	oto	riala	100		\sim	7r	Do	20	ata
7	Ba1O3Zr1	- 40	о Ш	ale	liais	(ല.(1., Uč	れしっ	ΖΙ,	Day	<i>э</i> е,	elc.)
8	Ba1Se1							J			,	,
9	Be1H3Na1	5	2.15	0.51	0.49	0.41	0.23	1.25	9.63	14.17	1.67	
10	Bi1In1O3	5	1.22	0.26	0.22	11.71	0.35	44.78	7.13	2.87	8.37	
11	Br1K3O1	5	2.11	0.38	0.37	2.35	0.55	6.27	0.92	2.62	2.5	
12	Br1O1Rb3	5	1.46	0.34	0.33	2.13	0.41	6.35	1.07	2.66	3.58	
13	Br3Cd1Cs1	5	2.35	0.19	0.18	6.39	0.28	34.39	5.55	0.78	5.32	
14	C1K4O4	9	3.96	0.5	0.5	8.74	6.45	17.55	0.13	0.69	2.65	
15	C1Li4O4	9	6.53	0.8	0.79	3.45	1.84	4.28	4.28	1.66	2.63	
16	C1Na4O4	9	3.67	0.48	0.48	5.38	3.89	11.21	0.68	0.33	2.97	
17	C2Ca1	3	3.28	1.33	0.33	1.56	0.59	1.17	1.81	0.49	2.25	
18	Ca1O3Ti1	5	4.1	1	0.45	2.66	0.82	2.65			~	
19	Ca1O3Zr1	5	5.25	0.7	0.39	3.09	0.93	4.39		ata (Lura	ation
20	Ca3Cl3P1	7	3.4	0.63	0.34	0.56	0.27	1.13				
21	Cd1F3Rb1	5	5.58	0.44	0.44	40.03	0.52		N	orm	aliz	ation
22	Cl1Rb1	2	7.33	0.39	0.39	3.31	0.7				anz	ation
23	Cl3Cs1Sn1	5	1.75	0.47	0.08	0.11	0.1					
24	Cr1La1O3	5	3.33	0.72	0.36	1.69	1.45		_ a	na S	elec	ction o
25	Cs1F3Hg1	5	1.89	0.34	0.33	325.67	0.43	968.99				
26	Cs1F3Mg1	5	9.98	0.45	0.44	7.73	0.54	17.32		Ascr	into	rc
27	Cs3O3Sb1	7	5.18	1.96	0.32	2.23	1.63	1.14		esci	ipic	// 3
28	Cs3Sb1Se3	7	4.05	5.49	1.76	3.68	0.9	1.49				
29			4 70									
2.5	Cu201	3	1.79	0.82	0.82	1.87	0.22	2.28	6.84	11.98	6.14	
30	Cu3S4Ta1	3	1.79 3.84	0.82	0.82	1.87	0.62	2.28	6.84 5.3	11.98 6.82	4.93	
30 31	Cu3S4Ta1 F3Mg1Na1	3 8 5	1.79 3.84 8.9	0.82 1.31 0.56	0.82 0.97 0.56	1.87 1.24 11.78	0.22	2.28 1.06 21.02	6.84 5.3 3.94	11.98 6.82 15.54	6.14 4.93 2.97	
30 31 32	Cu3S4Ta1 F3Mg1Na1 F3Rb1V1	3 8 5 5	1.79 3.84 8.9 3.86	0.82 1.31 0.56 0.49	0.82 0.97 0.56 0.49	1.87 1.24 11.78 12.81	0.22 0.62 1.83 1.98	2.28 1.06 21.02 26.01	6.84 5.3 3.94 7.49	11.98 6.82 15.54 3.25	6.14 4.93 2.97 4.39	J
30 31 32 33	Cu3S4Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1Vb1	3 8 5 5 5	1.79 3.84 8.9 3.86 2.39	0.82 1.31 0.56 0.49 0.49	0.82 0.97 0.56 0.49 0.49	1.87 1.24 11.78 12.81 9.59	0.22 0.62 1.83 1.98 3.96	2.28 1.06 21.02 26.01 19.35	6.84 5.3 3.94 7.49 0.19	11.98 6.82 15.54 3.25 4.86	6.14 4.93 2.97 4.39 5.63	J
30 31 32 33 34	Cu3S4Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1Yb1 F3Sc1 F3Sc1	3 8 5 5 5 4	1.79 3.84 8.9 3.86 2.39 9.1	0.82 1.31 0.56 0.49 0.49 4.35	0.82 0.97 0.56 0.49 0.49 1.17	1.87 1.24 11.78 12.81 9.59 23.29	0.22 0.62 1.83 1.98 3.96 2.35 0.26	2.28 1.06 21.02 26.01 19.35 5.36	6.84 5.3 3.94 7.49 0.19 3.03	11.98 6.82 15.54 3.25 4.86 16.02	6.14 4.93 2.97 4.39 5.63 2.62	J
30 31 32 33 34 35	Cu2O1 Cu3S4Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1Vb1 F3Sc1 Fe1La1O3 Co1128b1	3 8 5 5 5 4 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63	0.82 1.31 0.56 0.49 0.49 4.35 1.11	0.82 0.97 0.56 0.49 0.49 1.17 0.53	1.87 1.24 11.78 12.81 9.59 23.29 11.35	0.22 0.62 1.83 1.98 3.96 2.35 0.36	2.28 1.06 21.02 26.01 19.35 5.36 10.23	6.84 5.3 3.94 7.49 0.19 3.03 9.02	11.98 6.82 15.54 3.25 4.86 16.02 6.58	6.14 4.93 2.97 4.39 5.63 2.62 6.85	J
30 31 32 33 34 35 36 27	Cu2O1 Cu3S4Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1Vb1 F3Rb1Vb1 F61La1O3 Ge1J3Rb1	3 8 5 5 4 5 5 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12	0.22 0.62 1.83 1.98 3.96 2.35 0.36 0.1	2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
30 31 32 33 34 35 36 37 38	Cu2O1 Cu3S4Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1V1 F3Rb1Vb1 F3Sc1 Fe1La1O3 Ge113Rb1 I1K3O1	3 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12	0.22 0.62 1.83 1.98 3.96 2.35 0.36 0.1	2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
30 31 32 33 34 35 36 37 38 39	Cu2O1 Cu3S4Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1V1 F3Rb1Vb1 F3Sc1 Fe1La1O3 Ge1I3Rb1 I1K3O1 Ir1S1Sb1	3 5 5 4 5 5 5 5 5 3 3	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12	0.22 0.62 1.83 1.98 3.96 2.35 0.36 0.1	2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
30 31 32 33 34 35 36 37 38 39 40	Cu201 Cu3S4Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1V1 F3Rb1Vb1 F3Rb1Vb1 Fe1La103 Ge113Rb1 I1K301 Ir1S1Sb1 N201 Q3Si1	3 8 5 5 4 5 5 5 5 3 3 3	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38 Des	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12	0.22 0.62 1.83 1.98 <u>3.96</u> 2.35 0.36 0.1	2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43 fro	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
30 31 32 33 34 35 36 37 38 39 40 41	Cu201 Cu354Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1Vb1 F3Sc1 Fe1La103 Ge113Rb1 I1K301 Ir1S1Sb1 N201 O2Si1 O3Pb1Ut	3 8 5 5 5 4 5 5 5 5 5 5 3 3 3 3 3 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38 Des	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12	0.22 0.62 1.83 1.98 3.96 2.35 0.36 0.1 deri	2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43 fro	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
20 30 31 32 33 34 35 36 37 38 39 40 41 42	Cu201 Cu354Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1Vb1 F3Sc1 Fe1La103 Ge113Rb1 Ir1S1Sb1 N201 O2Si1 O3Sp1Sr1	3 8 5 5 5 5 5 5 5 3 3 3 3 3 5 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38 Des	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06 Cript (Jant (1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12 OTS	0.22 0.62 1.83 1.98 2.35 0.36 0.1 deriv	2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12 /ed	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43 fro iCS	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 5.63 2.62 6.85 4.15	J
20 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Cu201 Cu3S4Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1V1 F3Rb1V1 F3Sc1 Fe1La103 Ge113Rb1 I1K301 Ir1S1Sb1 N201 O2Si1 O3Pb1Ti1 O3Sn1Sr1 O3Sn1Sr1	3 8 5 5 5 5 5 5 3 3 3 3 3 5 5 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38 Des Ql	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06 Cripto Uantu	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12 OTS	0.22 0.62 1.83 1.98 3.96 2.35 0.36 0.1 deriv	2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12 /ed	6.84 5.3 3.94 7.99 0.19 3.03 9.02 4.43 fro	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Cu201 Cu3S4Ta1 F3Mg1Na1 F3Rb1V	3 8 5 5 5 4 5 5 5 3 3 3 3 3 5 5 5 5 5 5 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38 Des	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06 Cripto	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12 OTS	0.22 0.62 1.83 1.98 3.96 2.35 0.36 0.1 deriv	2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12 /ed	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43 fro ics	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Cu201 Cu354Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1Vb1 F3Rb1Vb1 F3Sc1 Fe1La103 Ge113Rb1 I1K301 Ir1S1Sb1 N201 O2Si1 O3Pb1Ti1 O3Sr1Sr1 O3Sr1Tc1 O3Sr1Ti1 O3Sr1Ti1	3 8 5 5 5 5 5 3 3 3 3 3 3 3 5 5 5 5 5 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 4.35 1.11 0.38 Des QL	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06 cripto uantu calcu	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12 OTS	0.62 1.83 1.98 3.96 2.35 0.36 0.1 deriv mech ons (2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12 /ed nan	6.84 5.3 7.49 0.19 3.03 9.02 4.43 fro ics T)	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Cu201 Cu354Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1Vb1 F3Sc1 Fe1La103 Ge1/3Rb1 IrtS1Sb1 N201 O2Si1 O3Sn1Sr1 O3Sn1Sr1 O3Sr1Tc1 O3Sr1Tc1 O3Sr1Tc1 O3Sr25n1 O3Sr2	3 8 5 5 5 5 5 5 3 3 3 3 3 5 5 5 5 5 5 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 4.35 1.11 0.38 Des QU	0.82 0.97 0.56 0.49 1.17 0.53 0.06 cripto uantu calcu	1.87 1.24 11.78 12.81 9.59 23.29 11.35 0.12 OTS UM	0.22 0.62 1.83 1.98 3.96 0.36 0.1 deriv mechons (2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12 /ed nan	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43 fro ics T)	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J
20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Cu201 Cu354Ta1 F3Mg1Na1 F3Rb1V1 F3Rb1V1 F3Rb1V1 F3Sc1 Fe1La103 Ge113Rb1 I1K301 Ir1S1Sb1 N201 O2Si1 O3Pb1Ti1 O3Sn1Sr1 O3Sn1Sr1 O3Sr1Tc1 O3Sr1Tc1 O3Sr2Sn1 O3Sr2	3 8 5 5 5 5 5 5 3 3 3 3 3 3 5 5 5 5 5 5	1.79 3.84 8.9 3.86 2.39 9.1 1.63 1.66	0.82 1.31 0.56 0.49 0.49 4.35 1.11 0.38 Des qu	0.82 0.97 0.56 0.49 0.49 1.17 0.53 0.06 cripto uantu calcu	1.87 1.24 11.78 12.81 9.59 23.29 23.29 21.25 0.12 0TS JM	0.22 0.62 1.83 1.98 3.96 0.36 0.1 deriv mechons (2.28 1.06 21.02 26.01 19.35 5.36 10.23 3.12 /ed nan DF	6.84 5.3 3.94 7.49 0.19 3.03 9.02 4.43 fro ics T)	11.98 6.82 15.54 3.25 4.86 16.02 6.58 2.4	6.14 4.93 2.97 4.39 5.63 2.62 6.85 4.15	J

Curtarolo (Duke University)

Materials Fingerprints

0.429	0.456	0.044	0.129	0.005	0.072	0.003	0.732	0.376	0.515
0.714	0.260	0.076	0.121	0.001	0.022	0.000	0.123	0.098	0.113
1.000	0.292	0.173	0.496	0.008	0.365	0.001	0.607	0.008	0.763
0.429	0.430	0.398	0.754	0.011	0.032	0.000	0.301	0.508	0.517
0.429	0.966	0.075	0.194	0.039	0.110	0.020	0.218	0.389	0.391
0.429	0.287	0.459	0.793	0.014	0.032	0.001	0.293	0.502	0.525
0.429	0.442	0.085	0.134	0.009	0.126	0.003	0.350	0.419	0.500
0.000	0.166	0.061	0.073	0.002	0.014	0.000	0.292	0.466	0.531
0.429	0.121	0.054	0.185	0.001	0.021	0.000	0.948	0.884	0.012
0.429	0.017	0.012	0.069	0.036	0.039	0.045	0.699	0.176	0.721
0.429	0.117	0.032	0.134	0.007	0.071	0.005	0.079	0.160	0.100
0.429	0.044	0.025	0.116	0.006	0.049	0.006	0.094	0.163	0.214
0.429	0.144	0.000	0.052	0.019	0.028	0.034	0.541	0.045	0.398
1.000	0.324	0.053	0.190	0.027	1.000	0.017	0.000	0.040	0.116
1.000	0.613	0.103	0.315	0.010	0.274	0.003	0.414	0.100	0.113
1.000	0.292	0.049	0.181	0.016	0.597	0.011	0.055	0.017	0.149
0.143	0.248	0.193	0.116	0.005	0.077	0.000	0.168	0.027	0.073
0.429	0.340	0.137	0.168	0.008	0.113	0.002	0.468	0.702	0.272
0.429	0.469	0.086	0.142	0.009	0.131	0.003	0.395	0.689	0.320
0.714	262	0.075	0.121	0.001	0.027	0.000	0.117	0.103	0.082
	96	0.042	0.164	0.123	0.066	0.092	0.412	0.063	0.361
		0.034	0.142	0.010	0.095	0.008	0.128	0.439	0.238
		0.047	0.009	0.000	0.000	0.003	0.589	0.000	0.212
	64	0.090	0.129	0.005	0.213	0.001	0.604	0.540	0.543
0.429	0.092	0.025	0.116	1.000	0.052	1.000	0.606	0.788	0.554
0.429	1.000	0.044	0.164	0.023	0.069	0.017	0.476	0.898	0.333
0.714	0.461	0.300	0.112	0.007	0.241	0.000	0.021	0.013	0.359
0.714	0.335	0.897	0.733	0.011	0.126	0.000	0.001	0.002	0.283
0.143	0.081	0.107	0.328	0.005	0.019	0.001	0.670	0.747	0.485
0.857	0.311	0.190	0.392	0.004	0.082	0.000	0.516	0.424	0.357
0.429	0.879	0.063	0.216	0.036	0.272	0.021	0.380	0.970	0.149
0.429	0.313	0.051	0.185	0.039	0.296	0.026	0.735	0.200	0.300
0.429	0.148	0.051	0.185	0.029	0.608	0.019	0.006	0.301	0.431
0.286	0.901	0.704	0.478	0.071	0.354	0.004	0.289	1.000	0.112
0.429	0.063	0.156	0.203	0.035	0.041	0.010	0.887	0.409	0.560
0.429	0.066	0.032	0.000	0.000	0.000	0.002	0.429	0.147	0.274
0.429	0.137	0.025	0.121	0.007	0.074	0.006	0.072	0.150	0.145
0.143	0.199	0.164	0.392	0.001	0.057	0.002	0.594	0.149	0.951
0.143	0.487	0.880	1.000	0.013	0.370	0.000	0.067	0.246	0.000
0.143	0.589	0.029	0.125	0.009	0.088	0.008	1.000	0.424	0.321
0.429	0.312	1.000	0.207	0.002	0.025	0.007	0.487	0.035	0.686
0.429	0.125	0.007	0.060	0.009	0.098	0.012	0.877	0.367	0.520
0.429	0.000	0.117	0.108	0.004	0.145	0.001	0.691	0.558	0.504
0.429	0.329	0.149	0.172	0.008	0.112	0.002	0.460	0.602	0.377
1.000	0.370	0.036	0.147	0.018	0.652	0.014	0.271	0.071	0.315
0.143	0.019	0.014	0.086	0.003	0.153	0.003	0.622	0.313	1.000

entally Benign Semiconductor Manufacturing

Materials similarity based on their fingerprints

Tanimoto similarity coefficient S between materials A and B is calculated as follows: j=n j=n j=n j=n j=n

$$S_{A,B} = \left[\sum_{j=1}^{J} x_{jA} x_{jB}\right] / \left[\sum_{j=1}^{J} (x_{jA})^2 + \sum_{j=1}^{J} (x_{jB})^2 - \sum_{j=1}^{J} x_{jA} x_{jB}\right]$$

with x_j is the value of the jth descriptor and *n* the total number of descriptors in the fingerprints. Tanimoto similarities are ranging from 0 (no similarity between materials A and B) to 1 (A and B are identical).

Material Fingerprints

Materials fingerprints generated from electronic band structures computed with DFT. Band structures are transformed into band distribution plots (1) and then converted into materials fingerprints (2).

Our fingerprints can also be computed from material's Density of State.

Similarity Search

Similarity searching using fingerprint representations of chemicals is one of the most widely used approaches for chemical database mining: it assumes that similar compounds possess similar biological activities.

Adapted from J. Bajorath, SSS Cheminformatics, Obernai 2008

Reprofiling materials with desired properties

TANIMOTO_SIMILARITY (KTaO₃, SrTiO₃) = 0.74 BOTH COMPOUNDS ARE <u>SIMILAR</u> BASED ON THEIR BAND STRUCTURES

"<u>KTaO₃ is a promising candidate for superconductivity</u> induced by electrostatic doping because it is similar to the superconductor SrTiO₃: [...] have <u>similar</u> <u>band structures</u>, and both exhibit quantum para-electricity"

Ueno et al. Nature Nanotechnology, May 2011, Online Epub.

Future Plans

Next Year Plans

- DONE Calculate Fingerprints for all metal alloys (~17,000 different materials) stored in AFLOWLIB data base;
- Rank materials based on their similarity to the most toxic ones based on *in vitro* and *in vivo* experimental tests;
- New iteration of design/screening/test of carbon nanotubes with selective protein binding and low acute toxicity.

Long-Term Plans

- Assemble a standard set of MNPs fingerprints to build predictive QNAR models;
- Collect all QNAR models and make them freely accessible on our Chembench webportal.

Industrial Interactions and Technology Transfer

- Duke University Dr. Curtarolo DFT calculations for metal alloys
- Office of Naval Research Development of Predictive Materials Fingerprints for designing materials with desired properties
- *In Progress* NSF grant proposal for nanomaterials design (our group is looking for industrial partners)

Publications, Presentations, and Recognitions/Awards

- <u>Grant awarded by Office of Naval Research (</u>\$125k /year for 3 years)
- Fourches et al. Computer-Aided Design of Carbon Nanotubes with the Desired Bioactivity and Safety Profiles. Nature Nanotechnology. *Under Review*.
- SOT 2013 Presentation entitled "Quantitative Nanostructure-Activity Relationships"
- MRS 2012 Presentation entitled "Rational Design of (Nano)materials with the Desired Biological Properties Using Quantitative Structure-property Relationships (QSPR) Modeling"