ESH-Friendly Cleaning and Rinsing of Multi-

Material Surfaces and Structures

(Task Number: : 425.043)

Co-PIs:

- Srini Raghavan: Materials Science and Engineering, UA
- Farhang Shadman: Chemical and Environmental Engineering,
- Manish Keswani: Materials Science and Engineering, UA

Graduate Students:

• Chieh-Chun Chiang: Ph.D student; Materials Science and Engineering, UA

Undergraduate Students:

- Andrew Jimenez: Chemical and Environmental Engineering, UA
- Michael McBride: Chemical and Environmental Engineering, UA
- Jeffrey Tsay: Chemical and Environmental Engineering, UA

Other Researchers:

- Reza Dodge: Chemical and Environmental Engineering, UA
- Omid Mahdavi: Micro/Nano Fabrication Center, UA
- Jivaan Kishore: Chemical Engineering, UA

Cost Sharing: \$40k from WSP(Arizona TRIF) and \$25k from ProSys

Objectives, Method of Approach, Impact

Objective:

- Understand the bottleneck of the rinse process involving small structures, particularly those involving multi-materials
- Develop methods for reducing the water usage by:
 - ✓ Minimization of rinse bottleneck
 - ✓ On-line "end point detection"

Method of Approach:

- Application of a test structure and testbed
- Process simulation

ESH Impact:

• Robust and efficient rinse processes would have major impact on reducing water and energy usage in fabs

1. Comprehensive Process Simulator for

Development of Low-Water Rinse Methods

Process modeling is needed to:

- Analyze data and understand the process
- Search for new methods and better operating conditions

Process Simulator: Concept and Formulation

Multi-component transport:

 $\frac{\partial c_i}{\partial t} = \nabla \cdot \left(D_i \nabla c_i + z_i F \mu_i c_i \nabla \phi \right) - u \nabla c_i$

Surface adsorption and desorption:

$$\frac{\partial \mathbf{c}_{sj}}{\partial t} = \mathbf{k}_{aj} \mathbf{c}_i (\mathbf{s}_{0j} - \mathbf{c}_{sj}) - \mathbf{k}_{dj} \mathbf{c}_{sj}$$

Flux out of the trench: $\mathbf{F}_i = \mathbf{k}_m (\mathbf{c}_i - \mathbf{c}_{bi})$

- k_m (mass transfer coefficient in the boundary) is a known function of flow velocity on the wafer surface.
- New simulator handles multi-material layers with different properties.

Surface and Space Charge Effects

Distance from surface

Interaction of surface charge and ionic species

Example of Simulator Application: Removal of Ammonia from SiO₂ Surface

The key surface and liquid reactions occurring during the rinse:

 $H_2O \Leftrightarrow H^+ + OH^-$

 $NH_4OH \rightleftharpoons NH_4^+ + OH^-$

 $SiOH \rightleftharpoons SiO^- + H^+$

 $SiO^{-} + NH_{4}^{+} \Leftrightarrow SiONH_{4}$

SiO₂ immersed in aqueous ammonia solution

Effect of Trench Dimensions on Rinsing Dynamics

Rinse rate depends strongly on the trench depth (less strongly on the trench width)

Effect of Multi-Material on Rinsing Dynamics

Adsorption on the bottom layers dominates the rinse process

Effect of Impurity Adsorption and Desorption Properties

Ions, such as sulfate, with high k_a and low k_d, chemisorb and require long rinse times

Effect of Boundary Mass Transfer on Rinse Dynamics

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Methods for ESH Gain by Rinse Enhancement

Rinse Operation Parameters:

- Increase water flow rate: almost no effect for fine structures; waste of water
- Increased diffusivity (D): higher temperature (mild effect)
- Higher desorption (k_d): higher temperature (mild effect)
- Higher boundary mass transfer (k_m): mild megasonic (strong effect); higher spin rate (moderate effect)

2. End-Point Detection: A Key Step in Water Use Minimization

Case Study: Rinsing of silicon immersed in DHF

Materials and Methods

Equivalent Circuit of Silicon Sample Immersed

<u>in Dilute HF</u>

Rsc: Space charge resistance Csc: Space charge capacitance Rct : Charge transfer resistance

Cdl : Double layer capacitance Rs : Solution resistance EIS measurements were fitted using this equivalent circuit to characterize Si/HF interface.

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Chieh-Chun Chiang/#4

Electrochemical Impedance Spectroscopy of

n-Si Immersed in 2% HF

Rinsing of n-Si(100) Immersed in 2% HF

Conclusions and Future Plans

- Aqueous cleaning of patterned wafers, particularly those with multimaterials, involves significant increase in the usage of resources as well as increase in the processing time.
- The primary rinse bottleneck is the surface retention as well as transport of impurities inhibited by surface interactions and charge effects.
- A combination of experimental and simulation method is developed to study the bottleneck of the rinse process
- Cleaning of small features can be enhanced by decreasing the transport resistance. A key bottleneck is boundary mass transport; it can be potentially enhanced by mild megasonic.
- ➢ <u>Future Work:</u>
 - Experimental validation of simulation results using other substrates and impurities (both ionic and non-ionic).
 - Determination of surface interaction parameters using QCM.

<u>3. Direct Measurement of</u>

Surface Interaction Parameters:

Input to the Process Simulator

Testbed for Single-Wafer Spin Rinsing

Single-wafer spin rinse tool equipped with Electro-Chemical Residue Sensor (ECRS) for wafer-level rinse studies

Key Surface Interaction Parameters (k_a and k_d)

For a two-layer trench the ratio of desorption rate coefficients can have a significant role in contaminant removal from the bottom of the trench.

Adsorption/Desorption Test Cell (AD Test Cell)

A Novel Device for Direct Measurement of Surface Interactions

Principle of Operation of AD Test Cell

- > Dynamics of surface concentration is governed by Langmuir equation: $\frac{\partial C_s}{\partial t} = k_a C (S_0 - C_s) - k_d C_s$
- When the bulk concentration is very small, surface concentration exponentially decays as the contaminants are desorbed from the surface.
- The desorption rate coefficient can be extracted from the decay rate.
- If the desorbed contaminants are accumulated in a limited volume, the decay format is deviated from exponential due to adsorption. The adsorption rate coefficient can be calculated from this deviation.

Measurement Method Using AD Test Cell

Contaminants desorbing from surface and washed away via flow of water

Flow is stopped; contaminants desorbing from surface, concentration increases in the cell, conductance goes up

As contaminant concentration increases adsorption rate increases too and adsorption-desorption reach equilibrium, conductance flattens

Determining the Desorption Coefficient From AD Test Cell Data

While cell is being rinsed, the bulk concentration may be considered negligible, so the surface concentration decays exponentially:

$$C \cong 0, \ \frac{\partial C_s}{\partial t} = k_a C \left(S_0 - C_s \right) - k_d C_s \Rightarrow \frac{\partial C_s}{\partial t} \cong -k_d C_s \Rightarrow C_s \cong C_{s0} e^{-k_d (t - t_0)}$$

If we stop the flow of water, the bulk concentration can be written as

$$C \cong C_{in} + \frac{\left(C_{s,in} - C_s\right)A}{V} = C_{in} + \frac{C_{s,in}A}{V} \left(1 - e^{-k_d(t-t_0)}\right)$$

Conductance is proportional with concentration so it can be written as:

$$Y \cong Y_0 + Y_1(1 - e^{-k_d(t-t_0)})$$

<u>Experimental Results</u> Sulfuric Acid Retention on Silica

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Summary and Conclusions

- AD test cells with surface to volume ratio as high as 10⁵ m⁻¹ can be fabricated and tested.
- Desorption rate coefficient can be extracted from resistance/conductance data using a simple analytical model.
- Adsorption rate coefficient can be obtained using the equilibrium data or application of a process model
- The substrates of cells can be coated with any desired material prior to cell assembly and corresponding adsorption-desorption rate coefficients for various ions can be measured.
- Adsorption-desorption properties can be measured for various fluids and different temperatures.

Industrial Interactions and Acknowledgment

- Financial and technical support from ProSys
- Technical discussions with Ian Brown of TEL.
- COMSOL Corp. assistance in software application.

Publications and Presentations

- Dodge, M.R. and Shadman, F. "Computer Modeling of Surface Interactions and Contaminants Transport in Microstructures During the Rinsing of Patterned semiconductor Wafers," *Computers and Chemical Engineering* (submitted in January 2014)
- Zamani, D., Dhane, K., Mahdavi, O., McBride, M., Yan, J., and Shadman, F. "Surface Cleaning of Small Structures during Spin Rinsing of Patterned Substrates" *Microelectronics Engineering Journal*, 108, 57-65 (2013).
- Chiang, C.C., Raghavan, S., Farhang Shadman "Improving Rinsing Efficiency by Studying Desorption Kinetics of Multivalent Ion on SiO₂ Surface using Electrochemical Impedance Spectroscopy," SRC-TECHCON 2013.
- Chiang, C.C., Raghavan, S., Farhang Shadman "Simulation of Rinsing Dynamics of Patterned Structure" SRC-TECHCON 2014 (submitted in February).