Develop Externally Validated QNAR Models That Can be Reliabliy Used to Prioritize Nanomaterials for Experimental Testing (425.045)

*Development of Materials Fingerprints *Predictive Models for Superconductivity

<u>**PIs:**</u>

- Alexander Tropsha, PhD (University of North Carolina at Chapel Hill)
- Denis Fourches, PhD (University of North Carolina at Chapel Hill)

Research Objectives

- Develop predictive QNAR models that correlate the compositional/physical/chemical/geometrical and biological descriptors of nanomaterials with toxicological endpoints or other valuable properties for semi-conductor industry;
- Employ QNAR models for virtual screening of libraries to prioritize materials for experimental testing;
- Mine and visualize very large sets of materials using their computed descriptors and other cheminformatics techniques.

ESH Metrics and Impact

- **1.** Obtain reliable descriptors of the physical and chemical properties of nanomaterials.
- 2. Develop predictive computational models that correlate physical-chemical descriptors of nanomaterials with their properties and potential toxic effects.
- **Impact:** Utilize the knowledge gained through above metrics for improved nanomaterials' experimental design and prioritized toxicity testing toward the manufacturing of safe nanomaterials.

Challenges in Modeling of Nanomaterials

S. Stern and S. McNeil, Toxicological Sciences, 101(1), 4-21, 2008.

- Structures are very diverse → a real challenge to develop quantitative parameters (descriptors) for (nano)materials.
- Systematic physico-chemical, geometrical, structural and biological studies of nanomaterials are nearly absent.
- Computational modeling of nanomaterials is only beginning to emerge; best if done in collaboration with experimental scientists.

Molecular fingerprints

bit string encodings of structural features and/or calculated molecular properties.

2D Fragment-based, keyed fingerprints: each bit position monitors the presence or absence of structural fragments MACCS (166 bits), BCI (e.g. 1,052 bits)

Material Fingerprints

Band structures are transformed into band distribution plots (1) and then converted into materials fingerprints (2).

SiRMS Fragmental Fingerprints

Materials cartography

ADDAGRA Network* based on DOS fingerprints 17,420 unique materials

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

*Fourches and Tropsha. 2013, Molecular Informatics, 32, 827–842.

Materials cartography

ADDAGRA Network* based on band structure fingerprints 17,420 unique materials **Bi- and polymetals**

atoms

Band gap, eV 10

*Fourches and Tropsha. 2013, Molecular Informatics, 32, 827–842.

(UNC-CH) Insulators, ceramics, complex oxides

Materials with

and

Dr. Olexander Isayev

small band gap

semiconductors

Similarity Search

Similarity searching using fingerprint representations of chemicals is one of the most widely used approaches for chemical database mining: it assumes that similar compounds possess similar biological activities.

Adapted from J. Bajorath, SSS Cheminformatics, Obernai 2008

Materials Similarity based on their Fingerprints

Tanimoto similarity coefficient S between materials A and B is calculated as follows: j=n j=n j=n j=n j=n

$$S_{A,B} = \left[\sum_{j=1}^{J} x_{jA} x_{jB}\right] / \left[\sum_{j=1}^{J} (x_{jA})^2 + \sum_{j=1}^{J} (x_{jB})^2 - \sum_{j=1}^{J} x_{jA} x_{jB}\right]$$

with x_j is the value of the jth descriptor and *n* the total number of descriptors in the fingerprints. Tanimoto similarities are ranging from 0 (no similarity between materials A and B) to 1 (A and B are identical).

Reprofiling materials with the desired properties

"<u>KTaO₃ is a promising candidate for superconductivity induced by electrostatic</u> doping because it is similar to the superconductor SrTiO₃: [...] have <u>similar</u> <u>band structures</u>, and both exhibit quantum para-electricity"

Ueno et al, Nature Nanotech, 2011, 6, 408-412

Modeling Materials Superconductivity

165 materials with continuous Tc values ranging from 2 K to 133 K extracted from the Handbook of Superconductivity.

All high Tc superconductors are localized in a compact region centered around Ba₂Cu₃XO₇ materials.

Modeling Materials Superconductivity

165 materials with continuous Tc values ranging from 2 K to 133 K

-SiRMS Fragments

-Random Forest

-5 fold external crossvalidation for a rigorous assessment of models' predictivity.

Prediction performances:

 $Q^2 = 0.69$, MAE = 0.17

Model Interpretation to Design Novel Materials

Atoms' contributions to logTc as given by the RF model

Deliverables

- Different types of structural and electronic materials fingerprints based on BS, DOS, and SiRMS descriptors;
- Visualization tools to navigate the materials space;
- Proof-of-concept similarity searches for materials;
- QMSPR models of materials superconductivity.

Future Plans

In Progress

- Screen the whole Aflowlib library using our superconductivity models;
- Prioritize a few interesting materials to be experimentally tested for superconductivity based on our model's predictions;
- Assemble a standard set of MNPs fingerprints to build predictive QNAR models.

Publications, Presentations, and Recognitions/Awards

- Grant awarded by Office of Naval Research (\$125k /year for 3 years)
- D.Fourches, A. Tropsha. Quantitative Nanostructure-Activity Relationships: from Unstructured Data to Predictive Models for Designing Nanomaterials with Controlled Properties. In book: *Nanotoxicology: Progress toward Nanomedicine*, 2nd Edition, CRC Press, edited by Nancy A. Monteiro-Riviere, C. Lang Tran. ISBN: 9781482203875, available 03/2014.
- Fourches and Tropsha. Using Graph Indices for the Analysis and Comparison of Chemical Datasets. 2013, Molecular Informatics, 32, 827–842.
- Cherkasov et al. QSAR Modeling: Where Have You Been? Where Are You Going To? 2014, J Med Chem, In Press.
- Golbraikh, Muratov, Fourches, and Tropsha. Dataset modelability by QSAR. 2013, JCIM, In Press.
- Fourches et al. Computer-Aided Design of Carbon Nanotubes with the Desired Bioactivity and Safety Profiles. Nature Nanotechnology. *Revised Manuscript Under Review*.
- Isayev et al. Materials Cartography. Nature Communications, *Submitted*.

Industrial Interactions and Technology Transfer

- Duke University Dr. Curtarolo DFT calculations for superconductive materials
- Office of Naval Research Development of Predictive Materials Fingerprints for designing materials with desired properties
- In Preparation NSF grant proposal for materials modeling & design
- *In Preparation* NSF grant proposal for nanomaterials ESH in collaboration with RTI