Develop Externally Validated ONAR

Models That Can be Reliabliy Used to
Prioritize Nanomaterials for

Experimental Testing wzs.4s)

*Development of Materials Fingerprints
*Predictive Models for Superconductivity
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» Alexander Tropsha, PhD (University of North Carolina at Chapel Hill)
» Denis Fourches, PhD (University of North Carolina at Chapel Hill)
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Research Objectives

* Develop predictive QNAR models that correlate the
compositional/physical/chemical/geometrical and biological
descriptors of nanomaterials with toxicological endpoints
or other valuable properties for semi-conductor industry;

« Employ QNAR models for virtual screening of libraries to
prioritize materials for experimental testing;

 Mine and visualize very large sets of materials using their
computed descriptors and other cheminformatics
techniques.
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ESH Metrics and Impact

1. Obtain reliable descriptors of the physical and chemical
properties of nanomaterials.

2. Develop predictive computational models that correlate
physical-chemical descriptors of nanomaterials with their
properties and potential toxic effects.

Impact: Utilize the knowledge gained through above metrics
for improved nanomaterials’ experimental design and
prioritized toxicity testing toward the manufacturing of
safe nanomaterials.
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Challenges in Modeling of Nanomaterials

Diesel Exhaust Particles Fullerene Nanotubes Dendrimers Quantum Dots

Incidental Nanoparticles Engineered Nanoparticles
S. Stern and S. McNeil, Toxicological Sciences, 101(1), 4-21, 2008.

e Structures are very diverse = a real challenge to develop
guantitative parameters (descriptors) for (nano)materials.

e Systematic physico-chemical, geometrical, structural and
biological studies of nanomaterials are nearly absent.

e Computational modeling of nanomaterials is only beginning to
emerge; best if done in collaboration with experimental scientists.



Molecular fingerprints

bit string encodings of
structural features and/or calculated molecular properties.

N
)\ N
o : A /NH #

o N=n molecular fingerprint

2D Fragment-based, keyed fingerprints: each bit position monitors

the presence or absence of structural fragments
(166 bits), (e.g. 1,052 bits)
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Material Fingerprints

Band structures are transformed into band distribution plots (1) and then converted
into materials fingerprints (2).
Band Structure Fingerprints
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SIRMS Fragmental Fingerprints

Ba,Ca,Cu;Hg04=A,BCD,E
Traditional simplexes for “Mixture” simplexes for
material constituents material constituents

taken separately taken separately
D(A), D(B), etc. D(A+B), D(A+B+C), etc.

Descriptors of material
n,*D(A) + ng*D(B) + ...
{ na*D(A+B) + ng*D(B+C+E) + ...
N, Ng, etc., are stoichiometric

fractions of constituents
A B, ..;ny<ng<.. Dr. Eugene Muratov

(UNC-CH)
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Materials cartography

ADDAGRA Network* based on DOS fingerprints
17,420 uniqgue materials
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Materials cartography

ADDAGRA Network* based on band structure fmgerprlnts
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Similarity Search

Similarity searching using fingerprint representations of chemicals is one

of the most widely used approaches for chemical database mining: it
assumes that similar compounds possess similar biological activities.
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Adapted from J. Bajorath, SSS Cheminformatics, Obernai 2008



Materials Similarity based on their Fingerprints

Tanimoto similarity coefficient S between materials A and B is calculated as
follows: =n

- [2 fofB]/ E(XJA) + 2( B) - 2 ij_fB]
=1

with x; Is the value of the j’h descriptor and n the total number of descriptors in
the fingerprints. Tanimoto similarities are ranging from 0 (no similarity between
materials A and B) to 1 (A and B are identical).

2.17 1.81 1.45 A 1.09
T T

" Distance

Hierarchical
clustering of 46
materials according
to their fingerprints.

Cluster Analysis:
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cluster, analysis of
hysical/chemical/
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——=r properties of
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Reprofiling materials with the desired properties
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TANIMOTO_SIMILARITY (KTaO;, SrTiO;) =0.74
BOTH COMPOUNDS ARE SIMILAR BASED ON THEIR BAND STRUCTURES

. N

[

“KTaO;is a promising candidate for superconductivity induced by electrostatic
doping because it is similar to the superconductor SrTiOs: [...] have similar
band structures, and both exhibit quantum para-electricity”

Ueno et al, Nature Nanotech, 2011, 6, 408-412 l
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Modeling Materials Superconductivity

165 materials with continuous Tc values ranging from 2 K to 133 K

extracted from the Handbook of Supercohdgbtiyity.
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Modeling Materials Superconductivity

165 materials with continuous Tc values
ranging from 2 K to 133 K

Predicted log(Tc)
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-SIRMS Fragments
-Random Forest

-5 fold external cross-
validation for a rigorous
assessment of models’
predictivity.

Prediction performances:

Q2=0.69, MAE =0.17



Model Interpretation to Design Novel Materials

Atoms’ contributions to logTc as given by the RF model
Ba,Ca,Cu;HgO4 (I9gTc=2.12) As,Ni,O,Sc,Sr, (IgTc=0.44)
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Deliverables

« Different types of structural and electronic materials
fingerprints based on BS, DOS, and SIRMS descriptors;

 Visualization tools to navigate the materials space;

» Proof-of-concept similarity searches for materials;

« QOMSPR models of materials superconductivity.

Future Plans

In Progress

« Screen the whole Aflowlib library using our
superconductivity models;

 Prioritize a few interesting materials to be experimentally
tested for superconductivity based on our model’s
predictions;

« Assemble a standard set of MNPs fingerprints to build
predictive QNAR models.
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Publications, Presentations, and

Recognitions/Awards

Grant awarded by Office of Naval Research ($125k /year for 3 years)
D.Fourches, A. Tropsha. Quantitative Nanostructure-Activity Relationships:
from Unstructured Data to Predictive Models for Designing Nanomaterials
with Controlled Properties. In book: Nanotoxicology: Progress toward Nanomedicine,
2nd Edition, CRC Press, edited by Nancy A. Monteiro-Riviere, C. Lang Tran. ISBN:
9781482203875, available 03/2014.

Fourches and Tropsha. Using Graph Indices for the Analysis and Comparison
of Chemical Datasets. 2013, Molecular Informatics, 32, 827-842.

Cherkasov et al. QSAR Modeling: Where Have You Been? Where Are You
Going To? 2014, J Med Chem, In Press.

Golbraikh, Muratov, Fourches, and Tropsha. Dataset modelability by QSAR.
2013, JCIM, In Press.

Fourches et al. Computer-Aided Design of Carbon Nanotubes with the Desired
Bioactivity and Safety Profiles. Nature Nanotechnology. Revised Manuscript Under
Review.

Isayev et al. Materials Cartography. Nature Communications, Submitted.
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Industrial Interactions and
Technology Transfer

Duke University — Dr. Curtarolo
DFT calculations for superconductive materials

Office of Naval Research — Development of Predictive Materials
Fingerprints for designing materials with desired properties

In Preparation — NSF grant proposal for materials modeling &
design

In Preparation — NSF grant proposal for nanomaterials ESH in
collaboration with RTI
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