Detection of Radicals and Reactive Species Formed in Wafer <u>Cleaning Solutions Irradiated with Megasonic Waves</u> (*Task Number: 2324.001.*)

PIs:

• Srini Raghavan, Materials Science and Engineering, UA

Other Researchers:

• Zhenxing Han, Postdoctoral Research Associate, Materials Science and Engineering, UA

Cost Share (other than core ERC funding):

• Donation of Cavitation Threshold (CT) cell and MegBowl from *ProSys*, Inc., \$30k

Objectives and Methods of Approach

Objectives

- Validate the existence of hydroperoxyl (HO $_2$ ·) radicals in liquid medium irradiated by megasonic waves
- Quantify the rate of generation of H· radicals in a megasonic field

Tasks

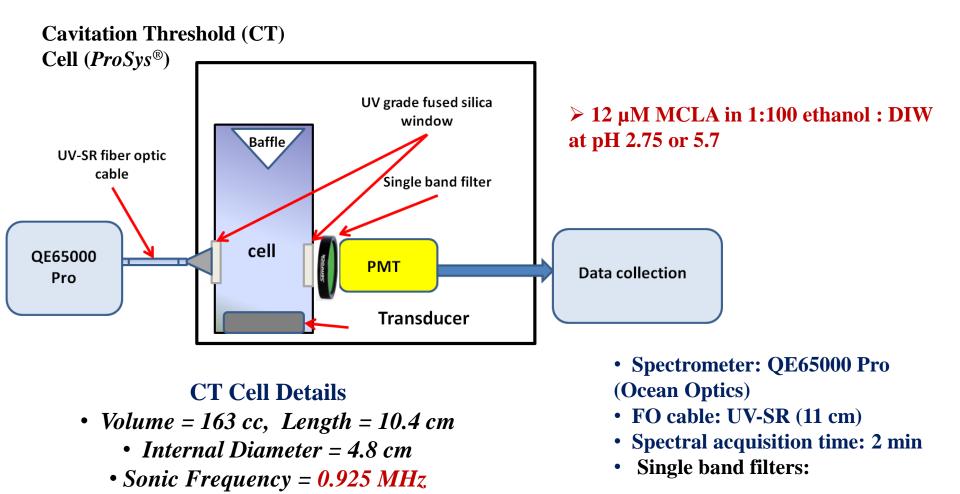
- Sub-task 1: In-situ detection of HO₂· using a chemiluminescence (CL) technique
- Sub-task 2: Estimation of the generation rate of H· radicals in a megasonic field using chronoamperometry

ESH Metrics and Impact

• Control of concentration of active radicals through megasonic input would allow *in situ* generation of cleaning power, thus leading to reduction in the use of "bulk" cleaning chemicals.

<u>Sub-task 1: In-situ detection of HO₂· using a</u> <u>chemiluminescence (CL) technique</u>

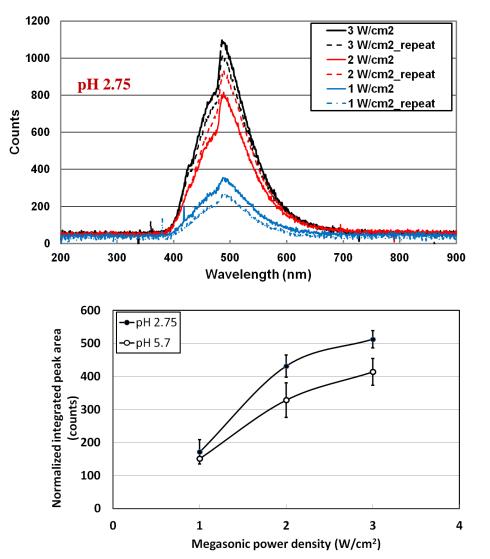
Method of Approach

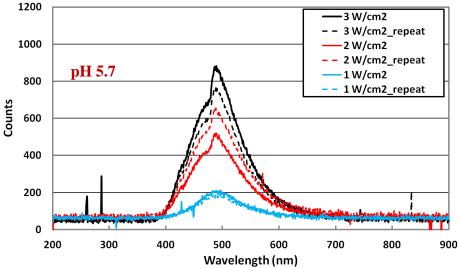

> Detection of hydroperoxyl radicals was done using a chemiluminescence (CL) method; MCLA (2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazine-3-one) was used as the CL probe* .

➤ The complex between MCLA and hydroperoxyl radical emits light in the wavelength range of 457 to 465 nm.

> CL emission was captured and analyzed by a spectrometer

*Y. Kambayashi and K. Ogino, Reestimation of cypridina luciferin analogs (MCLA) as a chemiluminescence probe to detect active oxygen species, J of Toxicological Sciences, Vol. 28 (3), pp. 139-148 (2003)

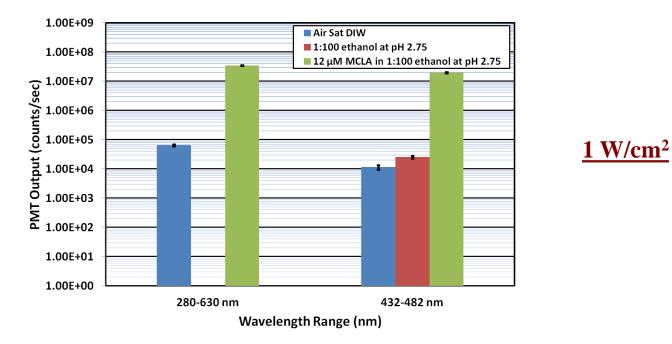

Schematic of the Experimental Set-up



- PMT Wavelength Range = 280 to 630 nm
 - Power Density Range = 0.1 to 4 W/cm²

- 1. 300~340 nm
- 2. 432~482 nm

Effect of Megasonic Power Density on CL Intensity



- The intensity of CL is a function of megasonic power density and solution pH
- Emission peak at 480 nm
- ➢ Results confirm the existence of HO₂.

Confirmation of Emission from MCLA Complex with Hydroperoxyl Radicals

from Sonoluminescence Signal Measured using PMT

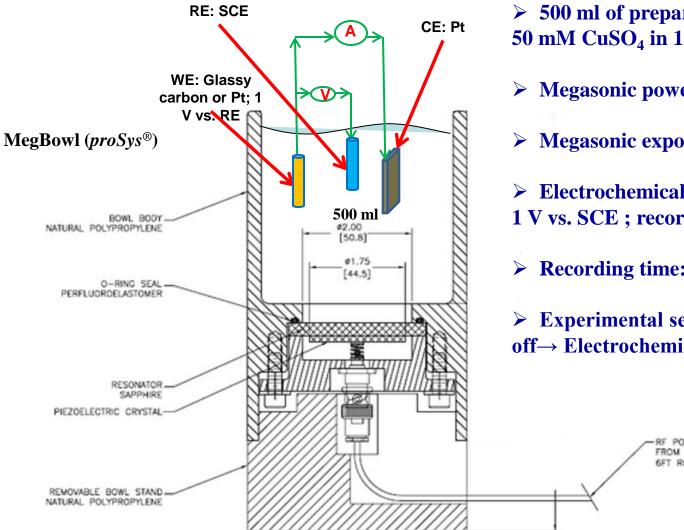
 In solutions containing MCLA, PMT output is dominated by emission in the wavelength range of 432 to 482 nm; this proves the existence of MCLA-HO₂· complex

Sub-task 2: Estimation of the generation rate of H · radicals in a megasonic field using chronoamperometry

Method of Approach

> Hydrogen radicals (H·) generated during megasonic irradiation can reduce Cu^{2+} ions to cuprous ions (Cu^{+}); in the presence of excess chloride ions, Cu^{+} will be converted to $CuCl_2^{-}$

$$H_2O \longrightarrow H^{\bullet} + OH^{\bullet}$$


 $Cu^{2+} + H^{\bullet} \longrightarrow Cu^{+} + H^{+} \qquad Cu^{+} + 2Cl^{-} \longrightarrow CuCl_{2}^{-}$

Generation rate of CuCl₂⁻ is equal to the generation rate of H· (assuming no other routes exist for the consumption of H·)

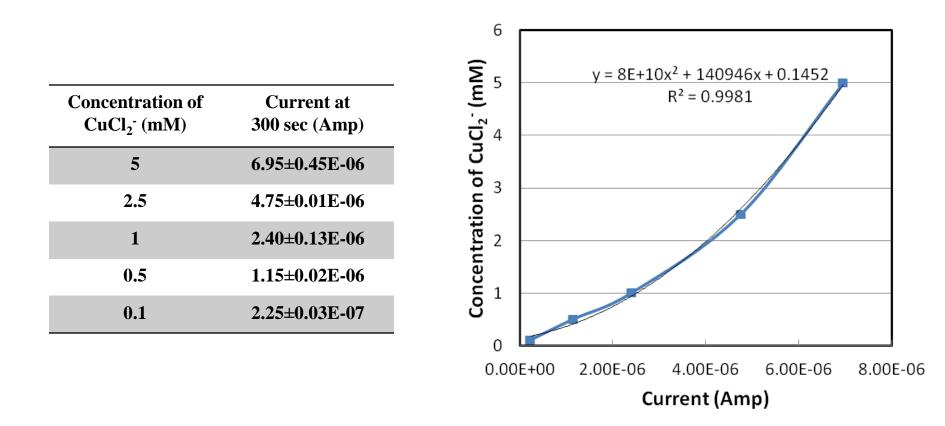
➤ CuCl₂⁻ can be measured by electrochemical oxidation to Cu²⁺

P. R. Birkin, J. F. Power and T. G. Leighton, Electrochemical evidence of H· by ultrasound, Chem. Commun., pp. 2230-2231 (2001)

Schematic of Electrochemical Set-up in MegBowl

500 ml of prepared solution containing 50 mM CuSO₄ in 1.5 M NaCl

- Megasonic power density: ~ 2.7 W/cm²
- Megasonic exposure time: 20 min


Electrochemical measurement: Apply **1 V vs. SCE ; record current change**

Recording time: 5 min

➤ Experimental sequence: Meg on → Meg off -> Electrochemical Analysis -> repeat

> POWER INPUT FROM IMPEDANCE MATCHING NETWORK 6FT RG316 CABLE W/BNC PLUGS

Calibration Curve for CuCl₂⁻

Standard solutions containing CuCl₂ were prepared from CuCl(s)

<u>Calculated H· Generation Rate in 50 mM CuSO₄ solution</u> <u>When exposed to Megasonic Field at 2.7 W/cm²</u>

Megasonic exposure time (min)	Current at 300 sec (Amp)	CuCl ₂ - concentration (mM)	CuCl ₂ - generation rate (mM/s)	CuCl ₂ - generation rate (nM/s)	H· generation rate (nM/s)	Solution temp. (degree C)
20	6.35E-07	2.67E-01	8.12E-05	~ 80	71 ± 12	42.0
	5.28E-07	2.42E-01	7.54E-05	~ 75		42.0
	4.35E-07	2.22E-01	5.79E-05	~ 58		41.2

> H· generation rate in the range of 71 ± 12 nM/s at 2.7 W/cm²

- > After 20 min megasonic exposure, solution temperature increased to be ~ 40 degree C
- ➤ In 125 Hz ultrasonic field, the generation rate of H· has been reported to be 400 nM/s at 6 W/cm²

<u>Summary</u>

➢ Developed an *in-situ* chemiluminescence (CL) based detection method for HO₂ · generated in megasonic field. CL intensity increases with megasonic power density.

> Using an electrochemical method, estimated the generation rate of H· in 2.7 W/cm² megasonic field to be 70 ± 10 nM/s.

Industrial Interactions and <u>Technology Transfer</u>

• Technical discussions with Dr. Ian Brown (TEL/AMAT)

Future Plans

Plans for the remainder of the contract period

• Measure the generation rate of hydrogen radicals in basic cleaning solutions at different power densities

Publications, Presentations, and Recognitions/Awards

- M. Keswani, S. Raghavan, R. Govindarajan and I. Brown, Measurement of hydroxyl radicals in wafer cleaning solutions irradiated with megasonic waves, *Microelectronic Engineering* (2013), in press, http://dx.doi.org/10.1016/j.mee.2013.12.028.
- Z. Han and S. Raghavan, *In-situ* chemiluminescence (CL) based detection and quantitation of hydroperoxyl radicals in aqueous solutions under megasonic irradiation, invention disclosure filed with Tech Launch Arizona.
- M. Keswani, S. Raghavan, I. Brown, Measurement of hydroxyl radicals in wafer cleaning solutions irradiated with megasonic field, presented at Sematech SPCC conference, Austin, TX, Apr. 4th, 2013.