Methods for Reducing UHP Gas Usage in Fabs

Task 425.036: Customized Project, Sponsored by Intel

Co- PIs:

- Farhang Shadman, Chem and Environ Eng, UA
- Carl Geisert, Sr. Principal Engineer, Intel

Graduate Students:

- Roy Dittler: Ph.D. in Chem Eng, graduating and joining Intel
- Jivaan Kishore: Ph.D. student, Chem Eng, UA

Undergraduate Students:

- Andrew Jimenez, Chem and Environ Eng, UA
- Mike McBride, Chem and Environ Eng, UA
- Jeffrey Tsay, Chem and Environ Eng, UA

Cost Sharing:

• \$55k (AZ-TRIF); \$32k (membership funds); Equipment (Tiger Optics)

Objectives

> Develop techniques for reducing UHP gas usage in fabs:

- Subtask 1: Elimination of "back diffusion" as a major source of contamination
- Subtask 2: Novel purge methods to remove contaminants during steady operation, start-ups, or recovery from system upsets.

Motivation and ESH Impact

Contamination of gas distribution systems during operation or at start-up results in wasting of expensive UHP gases and valuable tool operation time.

Subtask 1: Back Diffusion

Experiment Testbed

Gas distribution systems with different sizes and crack geometries were fabricated and provided by Intel APIN

CRDS: high ppt – low ppm APIMS: low ppt – low ppb Multistage Gas Purifier System

Comprehensive Simulator

Continuity equation:

Navier–Stokes equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho V) = 0 \qquad \qquad \rho \left(\frac{\partial V}{\partial t} + V \cdot \nabla V \right) = -\nabla P$$

Moisture concentration in the gas phase:

$$\frac{\partial C}{\partial t} = -\nabla \cdot (VC) + \nabla \cdot (D\nabla C) + \frac{4}{d} [k_d C_s - k_a C (S_0 - C_s)]$$

Diffusion Convection Adsorption and desorption

Moisture concentration on the pipe surface:

$$\frac{\partial C_s}{\partial t} = \frac{\nabla \cdot (D_s \nabla C_s) + k_a C(S_0 - C_s) - k_d C_s}{\text{Diffusion}}$$
Adsorption and desorption

Back Diffusion Simulator

Verification

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Back Diffusion Simulator Application

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Back Diffusion: Sample Results

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Back Diffusion: Sample Results

Subtask 2: Novel ESH-Friendly Purge Methods

PCP Cycle Composition Comparison

PCP Experiment Results and Model Verification

Pressure Cyclic Purge (PCP) for Purging Tool Chambers

Purging tool chambers (outgassing and removal of adsorbed impurities such as moisture) is a major user of expensive UHP gases and other resources.

> Lower Gas Usage + Lower Down Time Means ESH Gain + Lower Cost

Pressure Cyclic Purge (PCP)

The Comprehensive Chamber Purge Simulator

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho V) = 0$$

$$\rho \left(\frac{\partial V}{\partial t} + V \cdot \nabla V \right) = -\nabla P$$

$$\frac{\partial Cs}{\partial t} = R_{s}$$

$$\frac{\partial C}{\partial t} = -\nabla \cdot (VC) + \nabla \cdot (D\nabla C) + S/V \cdot R_{s}$$

$$R_{s} = k_{d}Cs - k_{a}C(S_{0} - Cs]$$
Pressure at inlet and outlet are given functions of time
$$P_{in} = P_{in}(t)$$

$$P_{out} = P_{out}(t)$$

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Example for Application of PCP: Dry-Down of a Tool Chamber

Parameters of EPSS chamber Length of chamber 1 m 0.2m 0.2m Width of chamber 1 m Purge gas concentration 0.2ppb Initial surface concentration 1.045E-4 mol/m^2 1m 1.045E-4 mol/m^2 Surface capacity 1m 111460 Pa Lower operating pressure 445830 Pa Higher operating pressure 60 s Time in low-pressure stage 0.2m 60 s Time in high-pressure stage 0.2m 16 s **Depressurization time** Adsorption rate constant 335.9 m^3/(mol*s) 4E-3 1/s **Desorption rate constant**

Pressure and Concentration Cycles in PCP

Overall Chamber Cleaning Profiles

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Surface Cleaning: PCP vs SSP

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Surface Concentration (molecules/cm^2)

PCP Simulation

PCP Simulation

Purge Time Saving by PCP

Target concentration: 1.19E15 molecules/cm²

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Summary and Conclusions

- A combination of experiments and process modeling was used to study the mechanism of impurity back diffusion in UHP systems.
- Back diffusion of contaminants can be minimized (and even eliminated in most cases) by proper choice of flow rate and spacing parts and vent opening.
- Pressure Cyclic Purge (PCP) process showed significant advantage over Steady State Purge (SSP) for gas distribution systems.
- A new form of PCP was developed for purging of tool chambers.
- PCP in chamber cleaning introduces beneficial convective flow in regions that do not see flow during conventional SSP purge.
- Typical case studies show up to 80% reduction in gas usage and required purge time.
- The process simulator can be used both for both new design and purging of a new gas distribution networks as well as for the efficient operation and dry-down of an existing systems.
- User-friendly simulators are now available for tech transfer.

Industrial Interactions

- Continue joint work with Intel; some technology transfer and implementation of results at Intel fabs have already taken place.
- Process simulator was requested by and sent to AMAT
- Comprehensive version of both simulators (distribution systems and tool chambers) will be available by Fall 2014

Publications and Presentations

- Roy Dittler, Jivaan Jhothiraman, Carl Geisert, Farhang Shadman. "Contamination of Ultra-High-Purity (UHP) Gas Distribution Systems by Back Diffusion of Impurities." *Journal of the IEST* under review 2014.
- Hao Wang, H. and Shadman, F. "Effect of Particle Size on the Adsorption and Desorption Properties of Oxide Nanoparticles" *AIChE Journal 59(5), 1502 (2013).*

Acknowledgements

- Carl Geisert (Intel): Dissertation co-advisor
- Gopal Rao (Intel, now at SEMATECH)
- Junpin Yao (Matheson Tri-Gas)
- Hao Wang (ASM)
- Tiger Optics (major financial support and technical assistance)