"Pad-in-a-Bottle": Planarization with Slurries Containing Suspended Polyurethane Beads

(Task 425.039)

Subtask 1: Experimentation

<u>**PI:**</u>

• Ara Philipossian, Chemical and Environment Engineering, UA

Graduate Students:

- Changhong Wu, Ph. D. candidate, Chemical and Environmental Engineering, UA
- Yan Mu, Ph. D. candidate, Chemical and Environmental Engineering, UA
- Ruochen Han, Ph. D. candidate, Chemical and Environmental Engineering, UA

Undergraduate Student:

• Jessica Amposta, Chemical and Environmental Engineering, UA

Other Researchers:

- Yun Zhuang, Postdoctoral Fellow, Chemical and Environment Engineering, UA
- Yasa Sampurno, Postdoctoral Fellow, Chemical and Environment Engineering, UA

Pad-in-a-Bottle Concept

EHS Benefits and Tradeoffs of PIB Process

Pad in a Bottle (PIB)

ESH Benefits

- Elimination of the need for CMP pads (100% reduction)
- At least 20X reduction in pad conditioner consumption (95% reduction)
- Combined yield and efficiency improvement possible with PIB could reduce film deposition and over-polish time by 25%
- Reduction in health risks associated with counter-face change (counter-face material has significantly longer life than polyurethane pads and requires less frequent changes)

ESH Tradeoffs

- Use of counter-face material
- Comparable amounts of worn polyurethane material in waste stream as in conventional CMP

Objectives

Objectives

- Determine whether PU beads will function as a replacement for pad asperities
- Investigate the effect of PU bead size and polishing pressure on oxide removal rate and dishing/erosion

SEM Images of PU Beads

 $D_{50} = 15 \ \mu m$

PU beads are in spherical shape and have a smooth surface.

SEM Images of PU Beads

 $D_{50} = 35 \ \mu m$

PU beads have irregular round shapes and some beads have a rough surface.

Experimental Conditions Blanket Wafer Polishing

- APD-500 Polisher and Tribometer
- Sliding Velocity
 - 1.2 m/s
- Polishing Pressures
 - 3, 4 and 5 PSI
- Slurry
 - Cabot Microelectronics Corporation SS25
- Additive (i.e. surfactant)
 - Silsurf at 0.7 g/L
- Slurry Flow Rate
 - 200 ml/min
- Wafer
 - 200-mm blanket TEOS wafers

- Counter-face
 - Polycarbonate with concentric groove design
- Counter-face Break-in
 - MMC 325-grit at 6 lb_f for 15 minutes
- Counter-face Cleaning
 - 3M PB32A brush at 3 lb_f for 30 s between polishes
- PU Beads
 - 15 and 35 micron
 - 2 g/L
- Polishing Time and Repeat
 - 60 seconds
 - Repeat once for each condition

Effect of PU Beads on COF

COF remains stable at different polishing pressures for both PU beads. PU beads with D_{50} of 35 µm provide higher COF than PU beads with D_{50} of 15 µm.

Removal Rate vs. Frictional Force

Removal rate shows a linear trend with frictional force for both PU beads. PU beads with D_{50} of 15 µm provide higher removal rates than PU beads with D_{50} of 35 µm.

Experimental Conditions Patterned Wafer Polishing

- APD-500 Polisher and Tribometer
- Sliding Velocities
 - 1.2 m/s
- Polishing Pressure
 - 5 PSI
- Slurry
 - Cabot Microelectronics Corporation SS25
- Additive (i.e. surfactant)
 - Silsurf at 0.7 g/L
- Slurry Flow Rate
 - 200 ml/min
- Wafer
 - 200-mm SKW3-2 patterned wafers

- Counter-face
 - Polycarbonate with concentric groove design
- Counter-face Break-in
 - MMC 325-grit at 6 lb_f for 15 minutes
- Counter-face Cleaning
 - 3M PB32A brush at 3 lb_f for 30 s between polishes
- PU Beads
 - 15 and 35 micron
 - 2 g/L
- Polishing Time and Repeat
 - 7 minutes for D₅₀ of 15 micron
 - 10 minutes for D₅₀ of 35 micron
 - Repeat once for each condition

SKW3-2 Patterned Wafer

-	4mm ►	-				
4mn	50% Density	10% Density (1)	80% Density	70% Density (2)	50% Density	T
	100% Density (10)	20% Density (3)	0% Density	90% Density (4)	30% Density	
	50% Density (5)	40% Density	30% Density (6)	60% Density	50% Density	20mm
	1 μm pitch	5 µm pitch SEM	20 µm pitch	100 µm pitch	500 µm pitch ₍₉₎	
	2 μm pitch	10 μm pitch	50 μm pitch	200 μm pitch (8)	1000 μm pitch	V
	-		20mm		patte	go/ rff rec. mark

A surface profiler was used to scan the wafer center die with 100-micron pitch and extract dishing and erosion for areas with different pattern densities.

Effect of PU Beads on Dishing

PU beads with D_{50} of 15 µm provide lower dishing than PU beads with D_{50} of 35 µm.

Effect of PU Beads on Erosion

PU beads with D_{50} of 15 µm provide lower erosion than PU beads with D_{50} of 35 µm.

Summary

- For both PU beads, COF remained stable at different polishing pressures. PU beads with D_{50} of 35 µm provided higher COF than PU beads with D_{50} of 15 µm.
- For both PU beads, the oxide removal rate increased linearly with polishing pressure. This indicated that the PU beads were not monosizely packed between the wafer and polycarbonate counterface.
- PU beads with D_{50} of 15 µm provided higher oxide removal rates than PU beads with D_{50} of 35 µm.
- PU beads with D_{50} of 15 µm provided lower dishing and erosion than PU beads with D_{50} of 35 µm.

"Pad-in-a-Bottle": Planarization with Slurries Containing Suspended Polyurethane Beads

(Task 425.039) Subtask 2: Simulation

<u>PI:</u>

• Duane Boning, Electrical Engineering and Computer Science, MIT

Graduate Student:

• Joy Johnson, Ph.D. candidate, EECS, MIT

Collaborator:

• Dr. Wei Fan, Cabot Microelectronics

Year 1: Blanket Model for Pad-in-a-Bottle

Conclusions – need height distribution:

- Bead packing model suggests negligible removal (insufficient point pressures) in the pure packing case)
- Experimental results (at right) suggest 1/R rather than 1/R² bead radius impact on removal rate, consistent with bead stacking or other bead height distribution model

Year 2: Single-Material PIB Die-Level Model Implementation and Simulation Studies

- Feature size effects: up-area (raised) features and down-area (recessed spaces) polish at different rates, depending on up/down feature size
- Chip scale effects: mm-scale interaction between pattern density regions

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Model – Bead Radius and Height Distribution

Greenwood Williamson approach

- Beads have idealized spherical surfaces with given radius (similar to previous approximation of pad asperity tip)
- Elastic Hertzian contact
- Geometry of Hertzian contact
 - $\ \ Describe bead and wafer surfaces with a radius of curvature \kappa_U and \kappa D, and with bead height distribution \lambda$
 - Solve for local up and down pressures:

$$\begin{cases} w(x, y) = F(x, y) \otimes P(x, y) + w_0 \\ P_U(x, y) = \frac{e^{\frac{h}{\lambda}} \kappa_U \sqrt{\kappa_D}}{\kappa_{asp} \left(\sqrt{\kappa_U} (1 - \rho) + e^{\frac{h}{\lambda}} \sqrt{\kappa_D} \rho\right)} P(x, y) \\ P_D(x, y) = \frac{\kappa_D \sqrt{\kappa_U}}{\kappa_{asp} \left(\sqrt{\kappa_U} (1 - \rho) + e^{\frac{h}{\lambda}} \sqrt{\kappa_D} \rho\right)} P(x, y) \end{cases}$$

Vasilev, IEEE Trans. on Semiconductor Manufacturing 2011

$$\begin{split} \kappa^{U,D} &= \frac{1}{R_{asperity}} \pm \frac{1}{R_{feature}} = \kappa_{asperity} \pm \kappa_{feature} \\ \kappa_{feature} &= \kappa_{ellipse} = \frac{b}{a^2} \\ \kappa^U &= \kappa_{asperity} + \frac{4\alpha h}{line^2} \\ \kappa^D &= \kappa_{asperity} - \frac{4\alpha h}{space^2} \end{split}$$

Model – Pad/Counter-face Modulus

- Pressure application mechanism
 - Conventional CMP: pad (long-range) + asperities (short-range)
 - PIB CMP: counter-face (long-range) + beads (short-range)
- Long-range pad/counter-face bending
 - Causes localized pressure differentials across the chip
 - Lateral bending of the pad or counter-face depends on the Young's modulus, E

Year 2: Single-Material PIB Die-Level Simulation Study Conclusions

• Bead size

- Larger *R* gives *slightly* better pattern performance
- But larger *R* decreases removal rate

Bead stacking height distribution

- Smaller λ (tight control on bead stacking, or tight control on bead size distribution) gives slightly better pattern performance
- Need some height distribution to achieve appreciable removal rate

Use of counter-face pad

- Using a stiffer counter-face pad and polyurethane beads, vs.
 conventional pad, is the dominant source of potential patterned wafer die-level performance improvement
- Roughening of counter-face could generate or increase λ height distribution, but that negative λ effect is small compared to major improvements coming from stiff counter-face

Year 3: Dual-Material PIB Die-Level Model Implemented for Dishing/Erosion Evaluation

- Extended PIB die-level model to handle dual-material cases
 - STI: removal of excess oxide over nitride, while seeking to avoid eroding the nitride layer, or dishing into the oxide trench regions
 - Consider layer materials; selectivity in oxide-to-nitride removal rate
- Match to UA patterned wafer experiments: PIB model parameters
- Quantify potential dishing/erosion improvements PIB vs. conventional

PIB Model Extractions from UA Experiments

• Best fit to UA experimental data (final polish dishing/erosion data)

Bead Diameter: 15 um

- Counter-face modulus (E): 1700 MPa
- Bead height (λ): 0.14 um
- Stacking (α): 11
- Oxide rate (K_0) : 62 nm/min
- Nitride rate (K_1) : 1.03 nm/min (selectivity = 60) RMS data to simulation: 5.32 nm

Bead Diameter: 35 um

- Counter-face modulus (E): 1700 MPa
- Bead height (λ): 0.14 um
- Stacking (α) : 11
- Oxide rate (*K*₀): 45nm/min
- Nitride rate (K_1) : 0.75 nm/min (selectivity = 60) RMS data to simulation: 17.2 nm

Full Chip Simulation for 15 um and 35 um Bead Diameter Experiments

Simulation Animation

Full Chip Simulation for 15 um Bead Diameter Experiment

- Across-chip metrics:
 - Dishing: max = 75.5 nm; rms = 51.0 nm
 - Erosion: max = 4.91 nm; rms = 2.35 nm

Comparison: PIB vs. Conventional

• First stage: removal of oxide over nitride

• Second stage: dishing and erosion occurs in regions that have cleared, while waiting for rest of chip to clear

Comparison: PIB vs. Conventional

Simulation Animation

Comparison: PIB vs. Conventional

Conventional CMP

- Asperity diameter: 20 um
- Pad modulus (E): 300 MPa
- Bead height (λ): 0.1 um
- Stacking (*α*): 10
- Oxide rate (*K*₀): 240 nm/min
- Nitride rate (*K*₁): 4 nm/min (selectivity = 60)

At best stopping time (when nitride clears across entire chip)

PIB Die-Level Optimization Results

- Impact of Stiff Counter-face
 - Nearly all of the improved die-uniformity, reduced dishing, and reduced erosion comes from the use of the stiffer counter-face compared to conventional pad
- Further Improvement?
- 3000 MPa vs. 1700 MPa
 - Additional reduction possible by choosing a stiffer polycarbonate counter-face
- Reduce oxide deposition
 - Reduce time, material, environmental impact from deposition

PIB Die-Level Optimization Results

	Case	Dishing Max (nm)	Clear Time (s)
Current PIB decreases dishing 2.3X, but 3.3X slower	Conventional (700 nm oxide)	182	127
• Stiffer PIB counterface decreases dishing 2.9X, slightly faster (3.2X conventional)	Current PIB (1.7 GPa; 700 nm oxide)	79	423
• Current PIB could achieve same dishing, but with 29% less oxide deposition and CMP	 PIB (3.0 GPa; 700 nm oxide) 	62	402
 time 2.1X conventional Stiffer PIB could achieve same dishing, but with 36% less 	PIB (1.7 GPa; 500 nm oxide)	161	265
deposition and more comparable CMP time 1.7X vs. conventional	PIB (3.0 GPa; 450 nm oxide)	177	218

Conclusions and Prospects: Pad-in-a-Bottle

- Substantial improvements in die-scale planarization are enabled by PIB
 - Demonstrated reduced dishing and erosion in STI experiments
 - Compared with chip-scale models
 - Primary improvement: stiff counter-face replaces polyurethane pads
- Removal rates
 - Blanket wafer rates (and effective blanket wafer rates on patterned wafers) are currently low – about 3x lower than conventional slurries
 - Future possibility: increase rate with rough 15um beads?
- Environmental impact
 - Can replace polish pad with polycarbonate counter-face
 - Materials (beads, slurries with surfactants) are compatible with existing CMP processes and effluents
- Outlook: PIB technology a viable option when/if the CMP industry is forced to move to pads/counter-faces with 5X stiffness to address future dishing/erosion and die uniformity requirements