Interactions of Chemical Mechanical Planarization Nanoparticles with Model Cell Membranes: Implications for Nanoparticle Toxicity (425.041)

<u>**PI:**</u>

• Professor Kai Loon Chen, Geography and Environmental Engineering (DoGEE), Johns Hopkins University (JHU)

Graduate Students:

- Peng Yi, PhD, DoGEE, JHU currently Assistant Professor at Florida Atlantic University
- Khanh An Huynh, PhD, DoGEE, JHU currently NRC research fellow at EPA
- •Xitong Liu, second-year PhD student, DoGEE, JHU
- Wenyu Gu, MSE, DoGEE, JHU currently PhD student at University of Michigan

<u>Cost Share (other than core ERC funding)</u>:

 \$101,472 from Johns Hopkins University in the form of 80% of tuition for 3 years

Objectives

- To investigate the propensity of chemical mechanical planarization nanoparticles (silica, ceria, and alumina) to attach to model biological membranes
- To develop a rapid assay to assess the propensity of nanomaterials to absorb on biological membranes

Sylvia S. Mader, *Biology*, 9th ed., 2007, McGraw-Hill. Nel et al., *Nature Materials* 2009, 8, 543–557.

ESH Metrics and Impact

- 1. Rapid assay for propensity of CMP particles to bind to cell membranes
 - > Use of sensitive quartz crystal microbalance (QCM-D)
- 2. Reduction in the use of CMP particles that bind strongly to membranes
 - CMP particles will be tested with binding assay before being employed in semiconductor fabrication plants
- **3. Reduction in emission of CMP particles that bind strongly to membranes to environment**
 - CMP nanoparticles may be replaced with other alternative materials/particles that do not strongly interact with biological membranes

DOPC Supported Lipid Bilayers (SLBs) as <u>Model Cell Membranes</u>

DOPC (1,2-dioleoyl-*sn*-glycero-3-phosphocholine)

Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D)

- Sensitivity of ca. 10 ng/cm²
- Frequency, Δf deposited mass
- Dissipation, ΔD "softness" of deposited constituents
- Laminar flow at 0.1 mL/min

• $T = 25 \ ^{\circ}C, pH = 2-8$

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Picture of crystal is from qsense <u>http://www.qsense.com/</u>

Formation of Supported Lipid Bilayers on Silica-Coated QCM-D Crystals

• Approach of Keller and Kasemo, 1998

Cartoons are from qsense <u>http://www.qsense.com/</u>

Deposition of CMP NPs on SLBs

Comparing Deposition Kinetics of Cabot CMP

<u>NPs on SLBs at pH 7.4</u>

- At pH 7.4, all CMP **NPs are negatively** charged
 - For both silica NPs, deposition kinetics increases as NaCl concentration increases
 - Ceria and alumina **NPs have low** propensity to attach to membranes

Graphene and Graphene Oxide

Graphene

- One layer of C atoms
- High electrical conductivity

phys.org

Novoselov et al., *Science,* 2004, 666-669

Dikin et al.,*Nat*ure, 2007, 457-460

Graphene oxide (GO)

- Reduced to form rGO
- Can be dispersed in water

Eda et al. Nat. Nanotechnol, 2008, 270-274

Toxicity of Graphene Oxide

Destructive extraction of phospholipids from membranes of *Escherichia coli* cells Hemolysis of red blood cells

Tu et al*. Nat. Nanotechnol*, 2013, 594-601

Liao et al., ACS Appl. Mat. Interfaces, 2011, 2607-2615

Deposition Kinetics of CNTs and GO on SLBs in NaCl

Attachment efficiencies of CNTs and GO lower than 1.0 even at high NaCl concentrations

Interactions of GO with Supported Vesicular Layer

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Interactions of GO with Supported Vesicular Layer

<u>Fluorescent Dye-Encapsulated Vesicles</u> <u>Deposited on QCM-D Crystals</u>

(A) Supported vesicular layers on Au

(B) Buffer rinse to remove external dye

(C) Introduce GO

(D) Monitor dye leakage and QCM-D signal

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Exposure of Vesicles to GO at 150 mM NaCl

Dye release decreases when GO is replaced by NaCl solution, indicative of hole healing

Summary of Current Findings

- Deposition of carbon-based nanomaterials on model biological membranes is controlled by electric double layer interactions
- Nanoparticle–membrane interactions are strongly influenced by pH and electrolyte concentrations
- Favorable attachment is not observed at high NaCl concentrations possibly due to repulsive hydration forces
- GO resulted in some dye release from vesicles, likely due to hole formation on vesicles
- Holes on vesicles seem to heal in the absence of GO

Industrial Interactions and Technology Transfer

- Dr. Chen, together with the other PIs from the SRC ERC, have obtained representative CMP NPs from Cabot Microelectronics in order to investigate their propensity to attach to biological membranes
- Dr. Chen, together with the other PIs, have closely interacted with SRC industrial members (David Speed from IBM and Mansour Moinpour from Intel) regarding research progress
- SRC industrial members will be updated on the development of the QCM-D as a rapid and online binding assay for nanomaterials
- SRC industrial members will be informed of the types of CMP NPs that have a strong propensity to bind to cell membranes based on the research findings in Dr. Chen's lab
- Dr. Chen's group presented 3 ERC/SRC teleseminars

Future Plans

Next Year Plans

- Continue to investigate the propensity of GO and CMP NPs to penetrate or disrupt model biological membranes
- Develop a rapid assay using the QCM-D to evaluate the propensity of nanomaterials to disrupt biological membranes

Long-Term Plans

• Examine the interactions of GO and CMP NPs with proteins and the effects of protein corona on NP interactions with model cell membranes

Publications, Presentations, and Recognitions/Awards

• Publications

Four papers published in Environmental Science & Technology, including a feature article featured on the cover of ES&T, one paper published in ES&T Letters, and one in Environmental Science: Processes and Impacts

- Presentations
 - Dr. Chen has been invited to give talks at seven universities, IBM, ACS Meeting at San Francisco, and US Environmental Protection Agency
 - > 9 oral presentations at conferences

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Out

Publications, Presentations, and Recognitions/Awards

- Recognitions/Awards
 - Dr. Chen was invited to give a keynote talk at the International Water Association (IWA) Symposium on Environmental Nanotechnology in Nanjing, China
 - Peng Yi and Khanh An Huynh received the prestigious C. Ellen Gonter Environmental Chemistry Awards from the American Chemical Society Division of Environmental Chemistry
 - > Khanh An Huynh and Xitong Liu received student awards from the Sustainable Nanotechnology Organization
- Students
 - > 2 Ph.D. students graduated: Peng Yi (2013) and Khanh An Huynh (2014)
 - > 1 MSE student graduated: Wenyu Gu (2013)

Thank you!

Professor Kai Loon Chen kailoon.chen@jhu.edu http://jhu.edu/crg