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Objectives, Method of Approach, Impact

Objective:

• Understand the bottleneck of the rinse process involving small 

structures, particularly those involving multi-materials

• Develop methods for reducing the water usage by mitigating the 

rinse bottlenecks

Method of Approach:

• Application of a test structure and testbed

• Process simulation

ESH Impact:

• Robust and efficient rinse processes would have major impact on 

reducing water and energy usage in fabs



Summary of the Work 

During Years 1 and 2 of the Project
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1. Testbed for Single-Wafer Spin Rinsing 

• Single-wafer spin rinse tool equipped with Electro-Chemical 

Residue Sensor (ECRS) for wafer-level rinse studies.

• Effect of wafer size, flow rate, and feature size.

• Methods for minimizing water usage.  Rinse water

Rotation

Patterned
wafer

Wafer

Trench

contact

sensor
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Ionic
Solution

Substrate

Flow direction

Typical Cell Thickness: 5-25µm

Typical Electrodes Spacing: 0.5-10 mm

Substrate

ElectrodeElectrode

Material Under Test Electrode Passivation Layer Flow direction

Electrodes

2. Adsorption/Desorption Test Cell

A Novel Device for Direct Measurement of Surface Interactions

Test cell was used to determine 

the kinetics of adsorption and 

desorption of NH4
+ and SO4

-2 on 

Si and SiO2
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𝐝𝐂𝐒𝐢𝐎𝐍𝐇𝟒
𝐝𝐭

= 𝐤𝐌𝐟 𝐂𝐒𝐢𝐎− 𝐂𝐍𝐇𝟒+ − 𝐤𝐌𝐫 𝐂𝐒𝐢𝐎𝐍𝐇𝟒

𝐝𝐂𝐒𝐢𝐎𝐇
𝐝𝐭

= 𝐤𝐄𝐫 𝐂𝐒𝐢𝐎−𝐂𝐇+ − 𝐤𝐄𝐟 𝐂𝐒𝐢𝐎𝐇

Governing Equations

𝐂𝐒𝐢𝐎𝐍𝐇𝟒 + 𝐂𝐒𝐢𝐎𝐇 + 𝐂𝐒𝐢𝐎− = 𝐒𝟎

Adsorption/desorption equations:

Total site density:

𝐒𝐢𝐎𝐇
kEf
⇌
kEr

𝐒𝐢𝐎− + 𝐇+ 𝐊𝐄 =
kEf
kEr

=
𝐂𝐒𝐢𝐎−𝐂𝐇+

𝐂𝐒𝐢𝐎𝐇
= 𝟏𝟎−𝟕.𝟓 𝐌

𝐒𝐢𝐎− + 𝐍𝐇𝟒
+
kMf
⇌
kMr

𝐒𝐢𝐎𝐍𝐇𝟒 𝐊𝐌 =
kMf
kMr

=
𝐂𝐒𝐢𝐎𝐍𝐇𝟒

𝐂𝐒𝐢𝐎−𝐂𝐍𝐇𝟒+
= 𝟏𝟎𝟎.𝟓 𝐌

SiO2

O O O
Si Si

OH O−
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+

O−

SiO2 immersed in aqueous 

ammonia solution

O
Si

H+NH4
+

OH−

Formulation of Process Simulator
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𝛛𝐂𝐢
𝛛𝐭

+ 𝛁 ∙ −𝐃𝐢𝛁𝐂𝐢 − 𝐳𝐢𝛍𝐢𝐅𝐂𝐢𝛁𝚽 = 𝐑𝐢

−𝛁𝟐𝚽 =
𝐅 × 𝐳𝐍𝐇𝟒+𝐂𝐍𝐇𝟒+ + 𝐳𝐇+𝐂𝐇+ + 𝐳𝐎𝐇−𝐂𝐎𝐇−

𝛆𝟎𝛆𝐫

𝐝𝐂𝐒𝐢𝐎𝐍𝐇𝟒
𝐝𝐭

= 𝐤𝐌𝐟 𝐂𝐒𝐢𝐎− 𝐂𝐍𝐇𝟒+ − 𝐤𝐌𝐫 𝐂𝐒𝐢𝐎𝐍𝐇𝟒

𝐝𝐂𝐒𝐢𝐎𝐇
𝐝𝐭

= 𝐤𝐄𝐫 𝐂𝐒𝐢𝐎−𝐂𝐇+ − 𝐤𝐄𝐟 𝐂𝐒𝐢𝐎𝐇

i = NH4
+, H+, and OH−

Governing Equations B.Cs.

𝐂𝐒𝐢𝐎𝐍𝐇𝟒 + 𝐂𝐒𝐢𝐎𝐇 + 𝐂𝐒𝐢𝐎− = 𝐒𝟎

Nernst Planck’s equations

Adsorption/desorption equations

Poisson’s equation

Total site density is fixed

𝐒𝐢𝐎𝐇
kEf
⇌
kEr

𝐒𝐢𝐎− + 𝐇+ 𝐊𝐄 =
kEf
kEr

=
𝐂𝐒𝐢𝐎−𝐂𝐇+

𝐂𝐒𝐢𝐎𝐇

𝐒𝐢𝐎− + 𝐍𝐇𝟒
+
kMf
⇌
kMr

𝐒𝐢𝐎𝐍𝐇𝟒 𝐊𝐌 =
kMf
kMr

=
𝐂𝐒𝐢𝐎𝐍𝐇𝟒

𝐂𝐒𝐢𝐎−𝐂𝐍𝐇𝟒+

𝐈𝐧𝐰𝐚𝐫𝐝 𝐟𝐥𝐮𝐱 𝐨𝐟 𝐍𝐇𝟒
+ = −𝐤𝐌𝐟𝐂𝐍𝐇𝟒+𝐂𝐒𝐢𝐎

− + 𝐤𝐌𝐫 𝐂𝐒𝐢𝐎𝐍𝐇𝟒
𝐈𝐧𝐰𝐚𝐫𝐝 𝐟𝐥𝐮𝐱 𝐨𝐟 𝐎𝐇− = 𝟎

𝐈𝐧𝐰𝐚𝐫𝐝 𝐟𝐥𝐮𝐱 𝐨𝐟 𝐇+ = 𝐤𝐄𝐟 𝐂𝐒𝐢𝐎𝐇 − 𝐤𝐄𝐫𝐂𝐒𝐢𝐎−𝐂𝐇+

𝛔𝐒 = −𝐧 ∙ 𝛆𝟎𝛆𝐫𝛁𝚽 = 𝐅 × 𝐂𝐒𝐢𝐎−

At trench surfaces

At mouth of the trench

𝐎𝐮𝐭𝐰𝐚𝐫𝐝 𝐟𝐥𝐮𝐱 𝐨𝐟 𝐍𝐇𝟒
+ = 𝐤𝐦 𝐂𝐍𝐇𝟒+ − 𝐂𝐍𝐇𝟒+_𝐛𝐮𝐥𝐤

𝐎𝐮𝐭𝐰𝐚𝐫𝐝 𝐟𝐥𝐮𝐱 𝐨𝐟 𝐎𝐇− = 𝐤𝐦 𝐂𝐎𝐇− − 𝐂𝐎𝐇−_𝐛𝐮𝐥𝐤

𝐎𝐮𝐭𝐰𝐚𝐫𝐝 𝐟𝐥𝐮𝐱 𝐨𝐟 𝐇+ = 𝐤𝐦 𝐂𝐇+ − 𝐂𝐇+_𝐛𝐮𝐥𝐤

𝚽 = 𝟎

B.Cs.

Effective surface charge

Formulation of Process Simulator
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Governing Equations I.Cs.

𝐂𝐎𝐇− = 𝐞𝐪𝐮𝐢𝐥𝐢𝐛𝐫𝐢𝐮𝐦 𝐩𝐫𝐨𝐟𝐢𝐥𝐞 𝐛𝐞𝐟𝐨𝐫𝐞 𝐫𝐢𝐧𝐬𝐞

𝐂𝐇+ = 𝐞𝐪𝐮𝐢𝐥𝐢𝐛𝐫𝐢𝐮𝐦 𝐩𝐫𝐨𝐟𝐢𝐥𝐞 𝐛𝐞𝐟𝐨𝐫𝐞 𝐫𝐢𝐧𝐬𝐞

I.Cs.

𝚽 = 𝐞𝐪𝐮𝐢𝐥𝐢𝐛𝐫𝐢𝐮𝐦 𝐩𝐫𝐨𝐟𝐢𝐥𝐞 𝐛𝐞𝐟𝐨𝐫𝐞 𝐫𝐢𝐧𝐬𝐞

𝐂𝐍𝐇𝟒+ = 𝐞𝐪𝐮𝐢𝐥𝐢𝐛𝐫𝐢𝐮𝐦 𝐩𝐫𝐨𝐟𝐢𝐥𝐞 𝐛𝐞𝐟𝐨𝐫𝐞 𝐫𝐢𝐧𝐬𝐞

𝐂𝐒𝐢𝐎𝐍𝐇𝟒 =
𝐂𝐒𝐢𝐎−𝐂𝐍𝐇𝟒+

𝐊𝐌

𝐂𝐒𝐢𝐎𝐇 = 𝐊𝐄𝐂𝐒𝐢𝐎−𝐂𝐇+

𝐂𝐒𝐢𝐎− = 𝐒𝟎 − 𝐂𝐒𝐢𝐎𝐍𝐇𝟒 + 𝐂𝐒𝐢𝐎𝐇

𝛛𝐂𝐢
𝛛𝐭

+ 𝛁 ∙ −𝐃𝐢𝛁𝐂𝐢 − 𝐳𝐢𝛍𝐢𝐅𝐂𝐢𝛁𝚽 = 𝐑𝐢

−𝛁𝟐𝚽 =
𝐅 × 𝐳𝐍𝐇𝟒+𝐂𝐍𝐇𝟒+ + 𝐳𝐇+𝐂𝐇+ + 𝐳𝐎𝐇−𝐂𝐎𝐇−

𝛆𝟎𝛆𝐫

𝐝𝐂𝐒𝐢𝐎𝐍𝐇𝟒
𝐝𝐭

= 𝐤𝐌𝐟 𝐂𝐒𝐢𝐎− 𝐂𝐍𝐇𝟒+ − 𝐤𝐌𝐫 𝐂𝐒𝐢𝐎𝐍𝐇𝟒

𝐝𝐂𝐒𝐢𝐎𝐇
𝐝𝐭

= 𝐤𝐄𝐫 𝐂𝐒𝐢𝐎−𝐂𝐇+ − 𝐤𝐄𝐟 𝐂𝐒𝐢𝐎𝐇

i = NH4
+, H+, and OH−

𝐂𝐒𝐢𝐎𝐍𝐇𝟒 + 𝐂𝐒𝐢𝐎𝐇 + 𝐂𝐒𝐢𝐎− = 𝐒𝟎

Nernst Planck’s equations

Adsorption/desorption equations

Poisson’s equation

Total site density is fixed

prior to rinsing

Formulation of Process Simulator
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Electrical Potential at the bottom portion of the trench
0.196 M NH4OH

• Model extension to nm range

• Non-zero potential at mid-plane

• Double layers overlap

Trench width: 10 nm
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Effect of Trench Depth on Rinsing Dynamics
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Enhancement of boundary mass transfer has 

significant effect on rinse efficiency.

Effect of Mass Transfer Coefficient on Rinsing Dynamics



Rinse Operation Parameters:

 Increase water flow rate: 

• almost no effect on processes inside fine structures

• little effect on boundary mass transfer  

• waste of water

 Increased diffusivity (D):

• higher temperature (mild effect)

• increase in energy usage

Higher desorption (kd):

• higher temperature (mild to strong effect)

• increase in energy usage

Higher boundary mass transfer (km):

• higher spin rate (low to mild effect)

• mild megasonic (strong effect); 

Methods for ESH Gain by Rinse Enhancement

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing



Extending the Application of  Process Simulation: 

Dynamics of Etching/Cleaning/Rinsing 
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Wet Etching in a Simple Trench 
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𝐓𝐌𝐀𝐇 ⟶ 𝐓𝐌𝐀+ + 𝐎𝐇−

𝐒𝐢 + 𝟐𝐎𝐇− ⟶ 𝐒𝐢 𝐎𝐇 𝟐
𝟐+

+ 𝟒𝐞−

𝐒𝐢 𝐎𝐇 𝟐
𝟐+

+ 𝟒𝐇𝟐𝐎 + 𝟒𝐞− ⟶ 𝐒𝐢 𝐎𝐇 𝟔
𝟐−

+ 𝟐𝐇𝟐

𝐒𝐢 𝐎𝐇 𝟔
𝟐−

+ 𝐓𝐌𝐀+ ⟶ 𝐟𝐢𝐧𝐚𝐥 𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐬

Non-Uniformity Problem in Wet Etching
Example: Wet Etching of Poly-Silicon using TMAH

Method of approach is this study:

As a test case, a simple poly-Si trench is used:

• To study the mechanisms leading to non-uniformity issue during etching 

and post-etch rinsing.

• To develop a method to mitigate the non-uniform etching problem.

Reaction Mechanism
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Before Etching During Etching

X0
XTop

XBottom

∆𝐗 =
𝑿𝑻𝒐𝒑 − 𝑿𝑩𝒐𝒕𝒕𝒐𝒎

𝑿𝟎

Parameters to Represent Non-Uniformity

Substrate Substrate

Material 

to be etched
Material 

to be etched

Material 

to be etched

Material 

to be etched
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Non-Uniformity in Reference Conditions

𝐂𝐞𝐭𝐜𝐡𝐚𝐧𝐭 = 𝟐. 𝟐𝟐
𝐦𝐨𝐥

𝐋

𝐄𝐭𝐜𝐡 𝐫𝐚𝐭𝐞 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 = 𝐤𝐞𝐭𝐜𝐡 = 𝟓. 𝟔 × 𝟏𝟎−𝟏𝟏
𝐦𝟒

𝐦𝐨𝐥 ∙ 𝐬

Etch non-uniformity increases with the extent of etch

1000 nm

100 nm

Feature size before etching
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Trench Uniformity
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𝐂𝐞𝐭𝐜𝐡𝐚𝐧𝐭 = 𝟎. 𝟓𝟓
𝐦𝐨𝐥

𝐋

𝐂𝐞𝐭𝐜𝐡𝐚𝐧𝐭 = 𝟐. 𝟐𝟐
𝐦𝐨𝐥

𝐋

Etch non-uniformity increases with the etchant concentration
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Feature size before etching
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𝐤𝐞𝐭𝐜𝐡 = 𝟓. 𝟔 × 𝟏𝟎−𝟏𝟏
𝐦𝟒

𝐦𝐨𝐥 ∙ 𝐬

Effect of Etch Rate Constant on Trench Uniformity

Non-uniformity increases with temperature

𝐤𝐞𝐭𝐜𝐡 = 𝟏. 𝟒 × 𝟏𝟎−𝟏𝟏
𝐦𝟒

𝐦𝐨𝐥 ∙ 𝐬
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For the case presented here, the contribution of rinse to non-uniformity is small

Non-Uniformity in Etching Followed by Rinsing
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One Method to Obtain Etch Uniformity

• Suppress the rate where 

the etchant concentration 

is high

• Application of  organic 

compound as differential 

inhibitors, similar to 

suppressors used in 

electro-plating inside vias

and trenches Substrate

Material 

to be etched

Material 

to be etched

Inhibitor
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Uniformity with the Use of 

Differential Inhibitors

𝐤𝐞𝐭𝐜𝐡 = 𝐤𝟎 (𝟏 −
𝐲

𝛅
)

Y

X

Uniform trench (ΔX < ±2%) with different etched thickness 

can be obtained by selecting proper inhibitor

uniform trench

6400

7000

7600

8200

𝛅
±2% non-uniformity

1000 nm

100 nm

𝛅 = 𝐬𝐮𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐟𝐚𝐜𝐭𝐨𝐫
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 Stacked structures used for 

memory (example shown on 

the right); uniform (top and 

bottom) lateral wet etching is 

a challenge.

 Post-etch cleaning of side wall 

polymers in deep vias and 

trenches.

 Controlled, uniform etching 

of plasma exposed low-k side 

walls in the backend.
Si Substrate

Poly-Si

Poly-Si

Poly-Si

Poly-Si

Poly-Si

Poly-Si

Poly-Si

Poly-Si

SiO2

SiO2

SiO2

SiO2

SiO2

SiO2

SiO2

SiO2

SiO2

SiO2

T
re

n
c
h

Other Examples and Applications

Ideal condition
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Summary and Conclusions

 A rinse model incorporating Nernst-Planck equation, 

Poisson’s equation in conjunction with site-binding model 

and surface adsorption/desorption effects was developed.

 The simulator developed in the first 2 years is modified and 

enhanced; applicability to features in nano-meter range is 

demonstrated (following feedback from last review). 

 Mass transfer coefficient (km) and desorption rate constant 

(kd) of contaminant were found to strongly affect rinsing 

time.

 The process simulator has the potential to be applied to 

different contaminants and different trench materials.
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Summary and Conclusions

 The issue of non-uniformity in wet etching and post-

etch rinsing of structures in patterned wafers was 

studied.  

 The non-uniformity was found to be primarily caused 

by the depletion of the etchant and the concentration 

gradient inside the features.

 A novel approach to reduce non-uniformity to within a 

specified acceptable range was developed (the details 

are covered in a filed invention disclosure). 
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