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Objectives, Method of Approach, Impact

Objective:
« Understand the bottleneck of the rinse process involving small
structures, particularly those involving multi-materials

« Develop methods for reducing the water usage by mitigating the
rinse bottlenecks

Method of Approach:

 Application of a test structure and testbed
 Process simulation

ESH Impact:

* Robust and efficient rinse processes would have major impact on
reducing water and energy usage in fabs
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Summary of the Work
During Years 1 and 2 of the Project
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1. Testbed for Single-Wafer Spin Rinsing

Single-wafer spin rinse tool equipped with Electro-Chemical
Residue Sensor (ECRS) for wafer-level rinse studies.

Effect of wafer size, flow rate, and feature size. 3

Rinse water ﬁ
4_

(===

Patterned
lZwafer

Methods for minimizing water usage.

. —
Rotation \

contact

sensor

| SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing |




2. Adsorption/Desorption Test Cell

A Novel Device for Direct Measurement of Surface Interactions

Material Under Test Electrode Passivation Layer

Substrate

lonic
Solution ®

Substrate

o

Flow direction
Typical Cell Thickness: 5-25um
Typical Electrodes Spacing: 0.5-10 mm

Test cell was used to determine
the Kinetics of adsorption and
desorption of NH,*and SO,? on
Si and SiO,

Electrodes
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Overlapping of Double layer

Two SiO, plates immersed in 0.196 M NH,OH
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Overlapping of Double layer

Two SiO, plates immersed in 0.196 M NH,OH

-150 mV
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Overlapping of Double layer

Two SiO, plates immersed in 0.196 M NH,OH

-150 mV -150 mV
Result of Double
-100 mV Double -100 mV Layers
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Overlapping of Double layer

Two SiO, plates immersed in 0.196 M NH,OH

-150 mV

Double D le Layers
-100 mV LayersOve ped MORE
Overlapped
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Overlapping of Double layer

Two SiO, plates immersed in 0.196 M NH,OH

-150 mV -150 mV
Result of Double Layers
-100 mV Double -100 mV Overlapped MORE
Layers
Overlapped
50 mV MORE -50 mV
0mV 0mV
> >
10 nm 10 nm
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Typical Rinse Process

O Negatively charged site

@ Positively charged site SiOH = Si0O~ + H™
N t I t = — + N -
@ Neutralsite Sl Si0~ + NH} = SiONH,
‘ NH,* (ionic contaminants)
@ v (Charge neutral)

@ on- NH,OH
Solution

Away from surfaces
> (Charge neutral

if trench width >> EDL )
Electrical potential

Sio,
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Typical Rinse Process

G) Negatively charged site

@ Positively charged site SiOH = Si0O~ + H™
@ Neutral site Si0~ + NHf = SiONH,
@® NH,* (ionic cont_
© H* c -
] onvection
® oH Rinse water ON
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Typical Rinse Process

G) Negatively charged site
@ Positively charged site SiOH = Si0O~ + H™

@ Neutral site Si0~ + NH; = SiONH,
G—) NH,* (ionic contaminants)
© H*

. Convection
©® oH .
Rinse water

Q.9
Q.95

0.0
00
DG
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Typical Rinse Process

G) Negatively charged site

@ Positively charged site SiOH = Si0~ + H™
@ Neutral site Si0~ + NH; = SiONH,
@® NH,* (ionic cont_
H+
C;) O Convection
Rinse water
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Formulation of Process Simulator

Governing Equations
K kg Csio-C
SiOH = Si0~ +H* Kp = o = SI0C 0 _ 10-75 M
kg Ky Csion
r
Kt Kk Ce.
Si0” + NH} = SiONH, Ky=—2=_0N _ 4005y
kMr kMr CSiO‘CNH4+
. . . + —
Adsorption/desorption equations: NH,4 OH HY
dCsion +
dlt = Kgr Csio- Cy+ — Kgr Csion NH,
OH 0~ 0~
dCsionn, Koo Conr C ke C ! ! !
— — Kmrf Gsio~ Cyy,+ — Kmr Csionn, Si Sj Sj
dt O/ \ O/ \ O/ \O
$i0,

Total site density:

SIO, immersed in aqueous

CSiONH4 t Csion t Csio- = So ammonia solution
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Formulation of Process Simulator

Governing Equations

B.Cs.

Nernst Planck’s equations

oC;
a_tl + V- (=D;VC; — z;;FC,V®) = R;

i=NH,",H*,and OH"

Poisson’s equation

F X (ZNH4+CNH4,+ + ZH+CH+ + ZOH_COH_)

Vi =
€&y

Adsorption/desorption equations

dCsion
dl = Kgr Csjo-Cx+ — Kgr Csion
t
dCsionn
—(lit * = K Csio- Cyy,*+ — Kmr Csionn,

Total site density is fixed
Csionn, t Csion + Csio- = So

B.Cs.

At mouth of the trench

Outward flux of NH, " = km(CNH4+ — CNH4+_bulk)
Outward flux of OH™ = Kk, (Con- — Con- pulk)

Outward flux of H* = Ky, (Cy+ — Cy+ pui)
D=0
At trench surfaces

Inward flux of NH4+ = _kaCNH4+ CSiO_ + kMr CSiONH4_
Inward flux of OH™ =0
Inward flux of H+ = kEf CSiOH — kErCSiO_ CH+

O¢ — —I- (SOSrVCD) =F X CSiO_

\

Effective surface charge
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Formulation of Process Simulator

Governing Equations

|.Cs.

Nernst Planck’s equations

oC;
a_tl + V- (=D;VC; — z;;FC,V®) = R;

i=NH,",H*,and OH"

Poisson’s equation

F X (ZNH4+CNH4+ + zy+Cy+ + ZOH‘COH_)

Vi =
€&y

Adsorption/desorption equations

dCsion
dl = Kgr Csjo-Cx+ — Kgr Csion
t
dCsionn
—cllt * = K Csio- Cyy,*+ — Kmr Csionn,

Total site density is fixed
Csionn, t Csion + Csio- = So

|.Cs. prior to rinsing

Cyp,+ = equilibrium profile before rinse
Copg- = equilibrium profile before rinse
Cy+ = equilibrium profile before rinse

® = equilibrium profile before rinse

CSiO_ CNH4+
Csionn, = B
M

Csion = KgCsio-Cy+

Csio- = So — Csionn, + Csion
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Electrical Potential at the bottom portion of the trench
0.196 M NH,OH

15¢ 1A0
141 0 1.E+00
137 g 1.E-01 \ NH,* /
121 20 S 1E02 |
11¢ E 1eo0sf
10} e _
-40 O 1E-04 -
) € 1E-05 / OH \
81 2 10 |
-60 ®
7t s 1E07 |
c

6r -80 Q 1E08 |
5t g 1.E-09 \ ) /
4+ 1100 O 1E10 H

. 1.E-11 . . . : : : : : : ;
3_ o 1 2 3 4 5 6 7 8 9 10
1l s Trench width (nm)
Of -140
-11  «— Trench width: 10 nm =
-2t -160 .
_3} * Model extension to nm range

0 5 10 V¥-171  Non-zero potential at mid-plane
» Double layers overlap
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Effect of Trench Depth on Rinsing Dynamics

1.E+14

0.E+13 | Trench depth

SRR 400 nm

7.E+13 }
6.E+13 }
5.E+13 }
4.E+13 | Point B
3.E+13 }

2.E+13 }

at Point B (#/cm?)

1.E+13 }

Surface Concentration of NH;", Cs

1.E+10

0 2 4 6 8 10 12 14 16 18 20
Rinsing time (s)

Corners of deep structures are last to clean
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Effect of Trench Width on Rinsing Dynamics

Surface Concentration of NH;", Cs

at Point B (#/cm?)

1.E+14
9.E+13 }

8.E+13
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6.E+13 |
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4.E+13 |
3.E¥13. F
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1.E+13 |}
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Trench width

7 [lwon

/

Point B
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Rinsing time (s)

Bottom corners of narrow structures are last to clean
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Effect of Desorption Rate Constant on Rinsing Dynamics

1.E+14 1(4)_n>m
9.E+13 |} Ky (1/s) I
400 nm
8.E+13 ‘ ‘
—r

7E+13 L Point B
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3.E+13 }
2.E+13 |
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0 5 10 15 20 25 30 35 40 45 50
Rinsing time (s)

Desorption becomes a greater controlling factor as rinse

progresses with time
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Effect of Mass Transfer Coefficient on Rinsing Dynamics

Surface Concentration of NH;*, Cs

at Point B (#/cm?)

1.0E+14
9.0E+13 |}
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Enhancement of boundary mass transfer has

significant effect on rinse efficiency.

boundary mass-transfer (k)
affected by megasonic

Rinse Wate[ /
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Methods for ESH Gain by Rinse Enhancement

Rinse Operation Parameters:
» Increase water flow rate:
« almost no effect on processes inside fine structures
* little effect on boundary mass transfer
 waste of water

» Increased diffusivity (D):
* higher temperature (mild effect)
* increase in energy usage

» Higher desorption (k):
 higher temperature (mild to strong effect)
* increase in energy usage

» Higher boundary mass transfer (k.,):
* higher spin rate (low to mild effect)
* mild megasonic (strong effect);
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Extending the Application of Process Simulation:

Dynamics of Etching/Cleaning/Rinsing
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Wet Etching in a Simple Trench

Initial Uniform_ Non uniform Etchant Concentration
Etchant Concentration Inside the trench during etching

Before Etching During Etching
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Non-Uniformity Problem in Wet Etching
Example: Wet Etching of Poly-Silicon using TMAH

TMAH — TMA* + OH™

Si + 20H™ — Si(OH),*" + 4e~

Reaction Mechanism —
Si(OH),** + 4H,0 + 4e~ — Si(OH)¢*™ + 2H,

Si(OH);*~ + TMA' — final products

Method of approach is this study:
As a test case, a simple poly-Si trench is used:

« To study the mechanisms leading to non-uniformity issue during etching
and post-etch rinsing.

* To develop a method to mitigate the non-uniform etching problem.
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Parameters to Represent Non-Uniformity

XTop

Xo

XBottom

Before Etching During Etching

X1op — X
AX = Top Bottom
Xo
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Non-Uniformity in Reference Conditions

mol
0.30 ¢ Cetchant=2.22 T

4
m
Etch rate coefficient = k,,, = 5.6 x 10711 ( )
0.25 mol - s
020 F 100 nm
AX <«
0.15 F
‘ ‘ 11000 nm
0.10 F . i
Feature size before etching
0.05 F
0.00

0 10 20 30 40 50 60 70 80 90 100

Etched thickness at the mouth of trench (nm)

Etch non-uniformity increases with the extent of etch
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Effect of Etchant Bulk Concentration on

AX

0.25

0.20

0.15 F

0.10 F

0.05 F

0.00

Trench Uniformity

100 nm

<+—>

‘ ‘ IlOOO nm

Feature size before etching

Cetchant = 2.22 < L

mol
Cetchant = 0.55 T

0 10 20 30 40 50 60 70 80 90 100

Etched thickness at the mouth of trench (nm)

Etch non-uniformity increases with the etchant concentration
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Effect of Etch Rate Constant on Trench Uniformity

0.25 p
11 m? 100 nm
0.20 F ketch == 5 6 X 10 mo] s <“—>
‘ ‘ IlOOO nm
0.15 F
AX Feature size before etching
0.10 F
4
k. =14x10"1(—2 )
etch . mol .S L
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0.00 —_—
0O 10 20 30 40 50 60 70 80 90 100

Etched thickness at the mouth of trench (nm)

Non-uniformity increases with temperature
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Non-Uniformity in Etching Followed by Rinsing

Etching Rinsing
< > < >

0.16 [

0.14 |

0.12
100 nm

0.10 o

AX 008 | IlOOOnm

0.06 F Feature size before etching

0.04

0.02 F

0.00

35 40 45 50 55 60

Time (s)

For the case presented here, the contribution of rinse to non-uniformity is small
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One Method to Obtain Etch Uniformity

e Suppress the rate where
the etchant concentration Inhibitor

is high N\

« Application of organic
compound as differential
Inhibitors, similar to
suppressors used in
electro-plating inside vias
and trenches
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AX

0.05 r
0.04 F
0.03 F
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0.01 F

0.00
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-0.02
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-0.05

Uniformity with the Use of
Differential Inhibitors

+2% non-uniformity 5
8200
2 SO
T 7000
6400 Keten = Ko (1 — %)
uniform trench 8 = supression factor
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60 70 80 90 100

Etched thickness at the mouth of trench (nm)

Uniform trench (AX < +£2%) with different etched thickness

can be obtained by selecting proper inhibitor
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Other Examples and Applications

» Stacked structures used for
memory (example shown on
the right); uniform (top and
bottom) lateral wet etching is
a challenge.

» Post-etch cleaning of side wall
polymers in deep vias and
trenches.

» Controlled, uniform etching
of plasma exposed low-k side
walls in the backend.
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Summary and Conclusions

» A rinse model incorporating Nernst-Planck equation,
Poisson’s equation in conjunction with site-binding model
and surface adsorption/desorption effects was developed.

» The simulator developed in the first 2 years is modified and
enhanced; applicability to features in nano-meter range is
demonstrated (following feedback from last review).

» Mass transfer coefficient (k) and desorption rate constant
(k) of contaminant were found to strongly affect rinsing
time.

» The process simulator has the potential to be applied to
different contaminants and different trench materials.
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Summary and Conclusions

» The issue of non-uniformity in wet etching and post-
etch rinsing of structures in patterned wafers was
studied.

» The non-uniformity was found to be primarily caused
by the depletion of the etchant and the concentration
gradient inside the features.

» A novel approach to reduce non-uniformity to within a
specified acceptable range was developed (the details
are covered in a filed invention disclosure).
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