<u>Understanding the Sorption</u> <u>Characteristics of III-V Materials on</u> <u>CMP Nanoparticles and Evaluate their</u> <u>Environmental Impact using a Zebrafish</u> <u>Model</u>

(Task Number: 425.050)

<u>**PI:**</u>

• Andre Nel, Medicine, University of California, Los Angeles

Co-task Leader:

Sijie Lin, Postdoctoral Fellow, UCLA

Researchers:

- Olivia Osborne, Postdoctoral Fellow, UCLA
- Wendy Jiang, Postdoctoral Fellow, UCLA

Graduate Students:

• Juyao Dong, PhD candidate, Chemistry and Biochemistry, UCLA

Our Predictive and High Throughput Screening Approach to Study the Hazard Potential of Semiconductor Nanomaterials (24 Metal Oxides)

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Lin et al. ACS Nano, 2011; George et al. ACS Nano, 2011; Lin et al. Small, 2013

<u>Combined Use of Zebrafish and Model Wastewater Treatment to Assess the</u> <u>Environmental Hazard Potential of Nano Cu Materials</u>

Lin et al. ACS Nano, 2015

- Characterize the sorption of III-V metal ions onto the silica nanoparticle surface, by in-house design and synthesis of a library of magnetized silica nanoparticles (MSN);
- Use zebrafish as a representative environmental model to assess the hazard potential of sorbed and non-sorbed MSN's as well as the consortium-provided silica nanoparticles;
- Implement zebrafish HTS techniques that aims to relate the physiochemical properties of sorbed III-V materials and CMP silica nanoparticles to possible hazard generation by these materials.

ESH Metrics and Impact

Use the following metrics to give a convincing justification for the ESH significance of this project. Be specific (general statements were criticized in the last review); please be as quantitative as possible.

- 1. Reduction in the use or replacement of ESH-problematic materials
- 2. Reduction in emission of ESH-problematic material to environment
- **3.** Reduction in the use of natural resources (water and energy)
- 4. Reduction in the use of chemicals

Environmental Concerns:

- The increasing use of III-V materials (Ga, In and As) in wafer production in semiconductor industry
- One particular process involved in wafer production called chemical and mechanical planarization (CMP) uses silica, ceria and alumina nanoparticles to obtain atomic-level smooth wafer surface that generates significant amount of III-V materials containing slurry waste with unknown effect to the environment
- The mixing of III-V species and nanoparticles might alter the hazard profile of each individual chemical and/or nanoparticle

Typical CMP setup

CMP slurry nanoparticles: silica, ceria and alumina

<u>The Challenges:</u>

CMP nanoparticles (alumina, ceria and silica) interaction w/ III-V materials

- ? Limited information on the ecotoxicity of As, Ga, and In species alone?
- Hazard potential of CMP nanoparticles toxicity? ?
- ? CMP nanoparticles act as vectors for III-V transport
- The interaction between CMP nanoparticles and III-V materials and the resulted toxicity profile

Potential Toxic Elements

Dissolved chemicals:

- Arsenic Indium Gallium - $As(III): H_3AsO_3, H_2AsO_3, HasO_3, AsO_3, AsO_3, AsO_3, AsO_3, AsO_3, AsO_4, As$

Particulates:

- **CMP** nanoparticles ٠
- III-V particles (nano- and micron-sized) ٠

The combination of III-V and CMP nanoparticles

Very limited information on III-V materials' environmental toxicity

Chemicals	Models	Toxicity outcomes
GaCl ₃	Tilapia larvae	96 hr LC50 = 36 mg/L
$Ga_2(SO_4)_3$	Carp	96 hr LC50 = 20 mg/L
InCl ₃	Tilapia larvae	96 hr LC50 = 37.6 mg/L
InCl ₃	Zebrafish embryos	96 hr LC50 = 0.1 mM (22 mg/L)
Na ₂ HAsO ₄ (sodium arsenate)	Rainbow trout	Growth retardation above 10 ug/g food intake
NaAsO ₂ (sodium arsenite)	Fish cell lines (fin and ovary)	LC50 = 80 uM (1 mg/L)
As ₂ O ₃	Zebrafish	96 hr LC50 = 1 mM (400 mg/L)

Method Approach

Method Approach (cont'd)

Use of Ionic and Particulate Forms of III-V Materials as Analogues to Study the Sorption Characteristics

- Ionic form of III-V materials: GaCl₃, InCl₃, NaHAsO₄ and NaAsO₂
- Particulate form of III-V materials:

Highlight of Results (cont'd)

Magnetized silica nanoparticles (MSN)

Representative TEM images of magnetized silica nanoparticles (MSN). Red arrows indicate a layer of solid silica surface coating around MSN.

List of MSN:

- MSN with unmodified surface;
- MSN with positively charged surface (NH₂- modified);
- MSN with negatively charged surface (CH₃PO₂modified);
- MSN with a layer of solid silica surface;
- Silica nanoparticles without magnetic core for comparison purposes

Industrial Interactions

We envisage:

- To collaborate with the industry partners to establish suitable magnetic silica nanoparticles to study the sorption characteristics of III-V materials;
- To implement zebafish HTS screening to assess the environmental hazard potential of CMP slurries;
- To communicate with the semiconductor industry and to inform our findings on the environmental hazard potential associated with III-V materials;
- To work with the industry partners to help establish necessary EHS guidelines on III-V materials.

Education and Training Opportunities

CEIN offers:

- Student and postdoctoral mentoring and leadership programs;
- Professional development activities to improve skills in the areas of public speaking, professional presentations, and writing;
- Cross campus seminars where researchers present their individual research projects to the broad range of disciplines involved in CEIN's cross-cutting Nano EHS research

Thank you!!