<u>Understanding the Physicochemical</u> <u>Properties, Behavior and Toxicity</u> <u>Threshold Limit of Bound and Unbound</u> <u>Engineered Nanomaterials</u> (Task Number: 425.051)

PIs:

- Shyam Aravamudhan, Nanoengineering, NC A&T
- James Ryan, Joint School of Nanoscience and Nanoengineering, NCA&T/UNC-G

Graduate Students:

- Karshak Kosaraju, Nanoscience, UNC-Greensboro
- Mubin Tarannum, Nanoengineering, NC A&T
- Komal Garde, Nanoengineering, NC A&T

Other Researchers:

• Steven Crawford, Research Technician, Nanoengineering, NC A&T

Cost Share (other than core ERC funding):

• 25% cost-share (in cash) from JSNN (collaboration between NCA&T and UNC-G)

Previous Funding

- Conducted comprehensive physical and chemical characterization of four model slurries, bound ENs and few "real" slurries along with dried micro and NPs of comparable size and method of synthesis
- Investigated NP interaction with a mammalian cell
 - Surface Interaction, cellular uptake and internalization, interaction with nucleus (NP-induced DNA damage, Comet assay)
- With model slurries
 - Silica NP slurries NPs showed dose and time dependent toxicity (both colloidal and fumed silica NPs), NP aggregation major factor in toxicity
 - Acute toxicity observed in case of Ceria slurry NPs and Alumina slurry NPs showed no significant toxicity.
 - Significant increase in production of intracellular ROS, indicating that silica NPs cause cellular toxicity via oxidative stress.
 - Raman Spectroscopy of cellular uptake was used and showed the internalization and inhomogeneous distribution of ceria NPs in cells
- With "real" slurries preliminary physiochemical, toxicity and uptake data

Rationale and Objectives

Rationale

• Characteristics of spent CMP NPs, waste and bound ENs in biological media are expected to be very different in their state of aggregation, dispersibility and charge, compared to pre-CMP NP slurries.

• Overall/long-term objectives (Year 1 – 3)

- Building on current understanding on cell toxicity and uptake, along with a validated set of analytical, metrology and microscopy techniques, we will study the following ENs and EN mixtures
- EN systems (1) pre-CMP slurries ("real" or model), (2) spent waste and rinse water (post-CMP), (3) CMP waste (from SRC members), (4) bound ENs in CNT-polymer and Boron Nitride-epoxy composites
 - Determine toxicity threshold limit and EN behavior that is directly correlated to physicochemical data of spent CMP waste, dried residues on CMP tools and waste treatment systems and bound ENs
 - Determine recommended exposure and discharge limits from CMP processes and semiconductor packages with bound ENs

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Objectives (contd..)

• Short-term objectives (Year 1)

- Identification, acquisition and/or generation of relevant CMP NP slurries ("real" and model), spent CMP waste, rinse water and other bound ENs used/to be used in semiconductor packages
- Comprehensive physiochemical characterization of ENs and other constituents in pre- and post-processed CMP mixtures and in bound ENs using a validated set of analytical, metrology and microscopic techniques
- Conduct CMP and post-CMP processing of test wafers of inter-layer dielectric (HDP oxide), copper, tungsten, STI and III-V materials

ESH Metrics and Impact

- 1. Reduction in the use or replacement of ESH-problematic materials
 - Quantitative correlation of EN behavior and toxicity potential in relevant ESH media to physicochemical properties of M1
- 2. Reduction in emission of ESH-problematic material to environment
 - Determination of recommended exposure limit (REL) and discharge thresholds for bound and unbound ENs in spent CMP waste, rinse water, dried residues and packages
- **3.** Reduction in the use of natural resources (water and energy)
 - Results from Metric 2 will provided information on efficient use of water for dilution and/or neutralization processes
- 4. Reduction in the use of chemicals

Experimental Plan and Approach

I. Identification/Acquisition of relevant ENs

• CMP slurries – Unbound ENs

- Cu CMP for 3D TSV
 - Front and back side
- Cu CMP for Interconnect
- Barrier CMP for Interconnect
- Interlayer dielectric (ILD)
- Shallow trench isolation (STI)
 - Nitride and poly Si stopping
- High K metal Gate
 - Poly Si opening
- Emerging front-end/high-mobility channel materials
 - III-V materials GaAs, InGaAs and InP
 - Hazardous residues in spent CMP waste/rinse water
- Bound NPs in polymer composites
 - CNT-polymer and BN-epoxy as polymer composite packaging materials

I. Identification/Acquisition of relevant ENs

#	Name	Applications	рН	Size (nm)	Solid %	DLS (nm)	Measure d pH	Zeta				
1	Ultrasol 200S; Colloidal Silica	Si, GaAs, InP, Ge other IR materials	9.5	30	24	23.96	9.06					
2	Dow Klebosol 15 01-50; Colloidal	ILD, STI	10.9	50	30	65.43	10.5	37.8				
	silica											
3	Dow Klebosol 30 H50; Colloidal silica	W, Cu	2.0	50	30							
4	Ultrasol 3005; Ceria	STI, ILD, BK7, Fused Silica, Glass	8.8	550	10	319.9	8.56	-89.3				
5	Ultrasol 200A; Alumina	Al, CdZn, Te, GaAs, InP, Ni, Spinel, ZnSe Chalcogenides	4.0	100	20	281	3.19	54				
6	Cabot Semi- Sperse® 12E Fumed Silica	ILD, PMD, polysilicon, STI	10.9	140	10	158.7	8.57	-63.2				
• Selection criteria (a) applications (b) pH and (c) close to model slurries												
Selection entering (a) applications, (b) pit and (c) close to model startles												

II. CMP and Post-CMP Cleans

IPEC Avanti 472 CMP. Inset shows 8" polishing pad/surface (right) Lam DSS-200 Series II Brush Cleaner for post-CMP cleaning

- CMP metrics MRR, WIWNU, defects, surface analysis AFM, XPS
- Control of polishing conditions
 - (1) Platen Speed (2) Platen temp
 - (3) Carrier/platen speed (4) Polishing time
 - (5) Dow® IC1000TM K-groove polishing pad
 - (6) Downforce (7) Slurry flow rate

Nanolab, UC-Berkeley

II. CMP and Post-CMP Cleans

CMP of HDP oxide - STI, ILD

CMP of electroplated Cu

CMP of CVD W

 Obtained test wafers with blanket (HDP Oxide, CVD W and e-Cu) and CMP characterization mask set (SKW Associates, Advantiv Technologies and Silyb Wafer)

Characterization masks - MIT864 and MIT854

• Minimum line width $-0.18 \mu m$

II. CMP and Post-CMP Processes

• CMP of GaAs/InGaAs

- EPI 930 solid source MBE system (available at JSNN) used to grow In0.53Ga 0.47As n-channels.
- 10 nm of In0.15Al0.85As/GaAs superlattice with 2-3 repeats with about 300 nm GaAs buffer layer (threading dislocation filter) will be grown on SiGe wafer, which is graded to 100% Ge.
- Ge has a mismatch of only 0.4% with respect to GaAs; Off-cut wafers will be used to control the antiphase boundaries.
- Evolution of toxic arsenic trihydride and phosphine (from InP CMP) gases will be monitored, along with measuring the concentration of indium in discharge.

III-V (InGaAs) Channel Design (J. Oh, SEMATECH)

- Physiochemical properties
 - Size, shape, structure, crystallinity, surface area, zeta potential, reactivity, charge, and functionality, aggregation, dispersibility, composition, impurities, additives, surface analysis AFM, XPS
- Comparison of complete NP slurries, supernatants and dried ENs
- Techniques
 - DLS, zeta, NTA (NP under flow), XRD, SEM/EDS, HRTEM, Helium ion microscope, BET-surface area, FTIR, UV-Vis, Confocal Raman, ICP-MS/OES, NMR. ion chromatography and mass spectrometry

• Hexagonal Boron Nitride powder (hBN) of sizes 70, 500, 1500 nm were purchased from Lower friction Lubricants/M K Impex Corp (suggested by Chris Lee (TI)/UNT)

SEM image of h-BN powder

Raman spectra of h-BN powder

• Flow ability, thermal conductivity and flexural properties of boron nitride (BN) filled EPON 8281 and DEN 431 epoxy composites

• CNTs dispersed in 1% pluronic F-68

TEM image of CNTs in surfactant

Raman spectra of CNTs

IV. Acute and Long-term Behavior, Uptake and Toxicity Studies

- In vitro cell culture studies with different cell types
 - Phagocytes (macrophages); non-phagocytes (A459 lung, Hep G2 liver, Pk15 kidney cells)
- EN samples
 - Pre-CMP slurries (real/model), supernatants, dried ENs, post-CMP waste/rinse water, CMP waste (from SRC members), bound ENs in CNT-polymer matrix and Boron Nitride-epoxies degraded/digested
- Mechanistic short-term and long-term (>10 days) studies
 - Cell viability (MTT), membrane integrity (LDH), proliferation, differentiation, oxidative stress (ROS), genotoxicity (Comet), ECIS (for high-throughput, longitudinal studies)
- EN behavior and cellular uptake
 - Bioavailability, transport, uptake and accumulation
 - Confocal Raman, ICP and ultrastructural HRTEM

V. Toxicity/Behavior-Property Correlation and Threshold Limits

- Study the tole of aggregation, dispersibility, composition, additives and medium (cell culture media, rinse water, whole blood) on EN behavior and toxicity
- Establish correlation of varying physiochemical properties with EN behavior and toxicity data
- Statistical determination of REL and toxicity thresholds
 - Determine IC50 values, ANOVA, student's t-test

Deliverables and Timeline

Deliverables/Timeline	6	12	18	24	30	36
Comprehensive Physiochemical Characterization of Bound and Unbound EN and Other Constituents in Pre- and Post- Processed Mixtures						
Influence of Varying Physicochemical Properties from Different CMP Processing Conditions on Short- and Long- term (> 10 days Behavioral and Toxicity Measurements						
Correlation of Physicochemical Data with Behavioral and Toxicity Measurements				_	\Rightarrow	
Determination of Recommended Exposure Limit (REL) and Discharge Thresholds for Specific Set of EN Physiochemical Properties						\rightarrow
Formulation of Predictive Toxicology Guidelines for any Set of EN Physiochemical Data						
Dissemination						\Rightarrow

Industrial Interactions and Technology Transfer

- Continue collaboration with SRC/ERC Nanotoxicity consortium
 - Provide "real" post-CMP slurries to other consortium members for round-robin studies
- Work with SRC member companies and technical liaisons (Global Foundries, IBM and TI) to obtain "real" CMP spent waste from fab line
- Possible collaboration with RTI Nanotox/SEMATECH ESH
- Value to industry
 - Nanomaterial occupational safety and health information: determination of toxicity threshold and information on safe handling practices for CMP and other bound nanomaterials

• Chemical information on emerging materials and processes: High throughput screening for physiochemical properties, toxicity and behavior of materials of interest to the industry

