Detection of Radicals and Reactive Species Formed in Wafer Cleaning Solutions Irradiated with Megasonic Waves

(Task Number: 2324.001.)

<u>PI:</u>

• Srini Raghavan, Materials Science and Engineering, UA

Graduate Student:

• Bing Wu, PhD Candidate, Chemical and Environmental Engineering, UA

Other Researchers:

- Zhenxing Han, Postdoctoral Fellow, Currently with MP Mask (Micron)
- Manish Keswani, Postdoctoral Fellow, Currently Assistant Professor in Materials Science and Engineering, UA

Cost Share (other than core ERC funding):

• Donation of Cavitation Threshold (CT) cell and Bowl Meg from *ProSys*, Inc., \$30k

Project Duration	Objective	Publication
July 2012~June 2013	Determination of Hydroxyl Radical (OH•) Generation Rate (presented at 2013 Annual Review)	1
July 2013~June 2014	Measurement of Hydrogen Radical (H•) Generation Rate (presented at 2014 Annual Review)	
	Detection of Hydroperoxyl Radical (HO ₂ •) (presented at 2014 Annual Review)	1
	Quantitation of Hydroperoxyl Radical (HO ₂ •) Generation Rate	

• Generation of active radicals through the application of megasonic energy to liquid chemical formulations would create *in situ* generation of cleaning power, thus leading to reduction in the use of "bulk" cleaning chemicals.

Sub-task 1: Determination of OH• Generation Under Megasonic Irradiation

Method of Approach

Determination of OH• generation rate was done employing fluorescence spectroscopy using terephthalic acid as a probe.

Effect of transducer power density on generation rate of hydroxyl radicals in air saturated 1:10000 NH_4OH (29%): H_2O solutions of pH 10 at 25 °C.

Sub-task 2: Measurement of H• Generation Rate in a Megasonic Field

Method of Approach

Measurement of H• was done through the reduction of Cu²⁺ in the presence of excess chloride ions followed by chronoamperometry

<u>Sub-task 3: Detection and Quantitation of HO₂</u>. <u>Generation under Megasonic Irradiation</u>

Method of Approach

>Detection of hydroperoxyl radicals was done emlopying a chemiluminescence (CL) method using MCLA as a CL probe

>Quantitation of hydroperoxyl radicals was done utilizing the redox reaction between hydroperoxyl radicals and cytochrome *c*

Detection of HO₂•/O₂•⁻ Using <u>Chemiluminescence (CL)</u>

- MCLA (2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazine-3-one), also known as "Methyl Cypridina Luciferin Analogue"
- The complex between MCLA and HO₂•/O₂•⁻ radicals emits light in the wavelength range of 457 to 465 nm.

Ref: Y. Kambayashi and K. Ogino, J. of Toxicological Sci. 28 (2003), p. 139.

Quantitation of HO₂•/O₂• Radicals Using Ferricytochrome *c* (Fe^{III}cyt *c*)

Oxygen anion radical can be oxidized by Fe^{III}cyt c

P. Muirwood, FEBS Lett. 44 (1974), p. 22-24.
R. Margalit, A. Schejter, European Journal of Biochemistry. 32 (1973), p. 492-499.

<u>Quantitation of HO₂•/O₂• Radicals by</u> <u>Reaction with Ferricytochrome *c* (Fe^{III}cyt *c*)</u>

Characteristic peak appears at about 550 nm when cytochrome c is reduced

Plotted from MARGOLIASH, E, BIOCHEMICAL JOURNAL, 71 (1959), p. 570-578

Experimental Set-up for HO₂• Detection

- Sonic Frequency = 0.925 MHz
- PMT Wavelength Range = 280 to 630 nm
- Power Density Range = 0.1 to 4 W/cm²

- 1. 300~340 nm
- 2. 432~482 nm

Experimental Setup for Quantitation of

Bowl Meg (ProSys®)

UV-VIS-NIR Spectrophotometer (Shimadzu[®] UV-3100)

Ferricytochrome c in 0.1M buffered sodium formate solution at pH=7 was exposed to megasonic irradiation

Samples were collected at different times for spectrophotometric analysis using Shimadzu UV-3100 spectrometer

Detection: Effect of Megasonic Power Density on CL Intensity

The intensity of CL is a function of megasonic power density and solution pH

- Emission peak at ~490 nm
- **Results confirm the existence of HO**₂•

Confirmation of Emission from MCLA Complex with Hydroperoxyl Radicals

from Sonoluminescence Signal Measured using PMT

 In solutions containing MCLA, PMT output is dominated by emission in the wavelength range of 432 to 482 nm; this proves the existence of MCLA-HO₂• complex

Quantitation: Calibration Curve

The "change of absorbance" is defined as the difference between the absorbance spectra of ferrocytochrome c and ferricytochrome c

> Peak area at ~548 nm is proportional to Ferri cytochrome *c* concentration

Quantitation: Effect of Power Density on Generation of HO2•/O2•

➤ Generation rate of HO₂•/O₂•⁻ Radicals increases with power density

<u>Summary</u>

>Measured OH• generation rate using fluorescence spectroscopy technique

>Measured H• generation rate using chronoamperometry

➢ Developed an *in-situ* chemiluminescence (CL) based detection method for HO₂• generation; quantified HO₂• generation rate through the extent of reduction of ferricytochrome-c

Industrial Interactions and Technology Transfer

• Technical discussions with Dr. Ian Brown (TEL/AMAT)

Publications, Presentations, and Recognitions/Awards

Publications

- M. Keswani, S. Raghavan, R. Govindarajan, I. Brown, Measurement of hydroxyl radicals in wafer cleaning solutions irradiated with megasonic waves, *Microelectronic Engineering*. 118 (2014) 61-65.
- Z. Han, B. Wu, I. Brown, M.Beck and S. Raghavan, Detection of HO₂•/O₂•⁻ Radicals Formed in Aqueous Solutions Irradiated with Megasonic Waves using a Cavitation Threshold (CT) Cell Setup, *Solid State Phenomena*. 219 (2015) 170-173
- Z. Han and S. Raghavan, *In-situ* chemiluminescence (CL) based detection and quantitation of hydroperoxyl radicals in aqueous solutions under megasonic irradiation, invention disclosure filed with Tech Launch Arizona.

Presentations

- Z. Han, B. Wu, I. Brown, M. Beck and S. Raghavan, Detection of HO₂•/O₂•⁻ Radicals Formed in Aqueous Solutions Irradiated with Megasonic Waves using a Cavitation Threshold (CT) Cell Setup, presented at the 12th International Symposium on Ultra Clean Processing of Semiconductor Surfaces (UCPSS), Brussels, Belgium, Sept. 21-24, 2014.
- M. Keswani, S. Raghavan, I. Brown, Measurement of hydroxyl radicals in wafer cleaning solutions irradiated with megasonic field, presented at *Sematech SPCC conference*, Austin, TX, Apr. 4th, 2013.