Methods for Reducing UHP and

Process Gas Usage in Fabs

Customized Project, Sponsored by Intel

Co-PIs:

- Farhang Shadman, Chemical Engineering, UA
- Carl Geisert, Intel

Graduate Students:

- Jivaan Kishore: Ph.D. student, Chemical Engineering, UA
- Roy Dittler (Ph.D., graduated in 2014; currently with Intel)

Undergraduate Students:

• Andrew Jimenez, Chemical Engineering, UA

Cost Sharing:

• \$45k (AZ-TRIF); \$30k (membership funds); Equipment (Tiger Optics)

Objective

- Phase 1: Lowering gas usage by minimizing "back diffusion" of impurities in UHP systems (completed in 2014)
- Phase 2: Novel methods for purging contaminants during steady operation, start-ups, or recovery from upsets.
- > Phase 3: Reducing the usage of selected process gases.

Motivation and ESH Impact

Efficient purge and contamination control in gas distribution systems and process chambers result in reducing the usage of expensive UHP bulk and process gases, increasing throughput, and lowering cost.

Phase 2: Purging Laterals and Cavities

A large fraction of UHP gases in fabs is used for purging the gas distribution/delivery systems and process chambers during start up, gas switching, and for impurity removal.

Purge Techniques

Method of Approach: Experiment Testbed

Gas distribution systems with different sizes and classical geometries were fabricated and provided by Intel AI

CRDS: high ppt – low ppm APIMS: low ppt – low ppb Multistage Gas Purifier System

Method of Approach: Process Simulator

Continuity equation:

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho V) = 0$

Navier–Stokes equation:

$$o\left(\frac{\partial V}{\partial t} + V \cdot \nabla V\right) = -\nabla P$$

Simulator Validation

Base Case for PCP-SSP Comparison

Parameters of EPSS distribution line

Length of Main	2 m
Length of Lateral	1 m
Cavity Width	0.5 m
Cavity Depth	0.5 m
Purge gas concentration	0.2ppb
Surface capacity	1.06E-6 mol/m^2
Lower operating pressure	200000 Pa
Higher operating pressure	640000 Pa
Time in low-pressure stage	100 s
Time in high-pressure stage	50 s
Adsorption rate constant	1000 m^3/(mol*s)
Desorption rate constant	0.01 1/s
Valve loss coefficient	1E8

Surface Cleaning of Laterals: PCP vs SSP

Convection in Laterals: PCP vs SSP

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Purging Cavities

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Surface Cleaning in Cavities

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Purge Mechanism

Purge Mechanism

Parametric Studies

- Operating pressure range
- Cycling frequency
- System dimensions
- Cavity form
- Complex setups

PCP Pressure Cycle Range

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effect of Cycle Time

Effect of Cavity Shape

Arrow Surface: Velocity field

0.6 4E-6 0.55 0.5 0.45 PCP Cube A 0.4 0.35 0.3 Surface Concentration, Cs (mol/m²) 0.25 PCP Sphere A 0.2 3E-6 0.15 0.1 PCP Sphere B 0.05 0 -0.05 -0.1 -0.15 -0.2 2E-6 -0.25 B 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 Arrow Surface: Velocity field 0.55 0.5 0.45 1E-6 0.4 0.35 0.3 0.25 0.2 Α 0.15 0.1 0.05 0E+0 0 1000 2000 3000 -0.05 0 -0.1 -0.15 Time(s) -0.2 -0.25 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1

Effect of Cavity Size

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Cavities in Series

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Depressurization Stage

Pressurization Stage

Mass Flow Cycling

An Operator friendly method of implementing PCP in industrial systems

Phase 3: Reducing the Usage of Process Gases

Special Case: Ammonia Usage in Fabs

- Controlling moisture levels in ammonia process streams is a critical factor in ensuring repeatability and performance in associated processes.
- Differential evaporation of moisture vs ammonia creates accumulation of moisture with usage
- Fluctuation of moisture levels can be noticed with usage, cylinder to cylinder variability and due to diurnal effects
- Higher volume of expensive ammonia cylinders are wasted due to the uncontrolled and variable moisture levels required in different processes

<u>Understanding Moisture - Ammonia in</u> <u>Delivery and Distribution Systems</u>

- Multicomponent adsorption/desorption tests to determine system kinetics
- Challenge with varying moisture, ammonia concentrations, flow rates to estimate rate parameters
- Build and validate a process simulator for further studies and application to new methods in reducing ammonia usage.

Experimental Setup

Finding the Process Parameters by Dynamic Adsorption/Desorption Study

Time

Multi-Component Kinetic Studies

Gas-phase component mass balance

$$\frac{dC_{gi}}{dt} = \frac{Q}{V} (C_{g,in} - C_{gi}) + \frac{4}{d} (k_{di}C_{si} - k_{ai}C_{gi}(S_{0i} - C_{si}))$$

where $i = H_2 O$ in N_2 or $H_2 O$ in NH_3

Surface component mass balance

$$\frac{dC_{si}}{dt} = k_{ai}C_{gi}(S_{0i} - C_{si}) - k_{di}C_{si}$$

Kinetic parameters

- k_{ai} Adsorption rate constant of component i
- k_{di} Desorption rate constant of component i
- S_{0i} Total number of surface sites available for component i

Multicomponent Kinetic Parameters

Summary and Conclusions

- The proposed pressure cycle purge (PCP) approach, when designed and implemented properly for a system, has a major environmental and process benefits:
 - Reduces the usage of expensive UHP purge gases
 - Reduces the volume of waste streams
 - Reduces operating cost
 - Improves the reliability of gas quality at the POU
 - Minimizes the down time required for purging delivery lines, components, and process tools.
- The process simulator developed in this study is an effective and user-friendly tool for the design and implementation of PCP in a system.

Future Plan

- Continue working with Intel on methods to reduce the usage of process gases, purge gases, and expensive purification materials/methods by controlling the transient introduction of key impurities through adsorption/desorption, back diffusion, and other interactions in UHP gas delivery systems.
- The first case study selected for process gas use reduction is on ammonia usage and its moisture control.
- This customized project is open to other SRC members who like to join the collaboration.

Industrial Interactions

- Technology transfer and some implementation of results at Intel fabs have already taken place.
- Process simulator was requested by and sent to AMAT
- Other opportunities for tech transfer, case studies, and applications are invited.

Publications and Presentations

- Jivaan Kishore, Roy Dittler, Carl Geisert, Farhang Shadman. "Pressure Cycling for Purging of Dead Spaces in High-Purity Gas Delivery Systems." submitted and in review, *AIChE Journal*, February 2015.
- Roy Dittler, Jivaan Kishore, Carl Geisert, Farhang Shadman. "Contamination of Ultra-High-Purity (UHP) Gas Distribution Systems by Back Diffusion of Impurities." *Journal of the IEST* 57 (1), 2014.
- Hao Wang, H. and Shadman, F. "Effect of Particle Size on the Adsorption and Desorption Properties of Oxide Nanoparticles" *AIChE Journal 59(5), 1502 (2013).*

Acknowledgements

- Carl Geisert (Intel)
- Gopal Rao (Formerly with Intel and SEMATECH)
- Roy Dittler (Intel)
- Junpin Yao (Matheson Tri-Gas)
- Hao Wang (ASM)
- Tiger Optics (major financial support and technical assistance)