N₂O Abatement: Reaction Mechanisms and Methods for Improving Destruction Efficiency:

PIs:

• Jost O.L. Wendt, Chemical Engineering, University of Utah, Salt Lake City, UT

Other Researchers:

- •Rand Pummill, Reaction Engineering International, Salt Lake City, UT
- •Michael Bockelie, Reaction Engineering International, Salt Lake City, UT

Objectives

- Demonstrate value and applicability of kinetic modeling as applied to the specific problem of N_2O abatement in semi-conductor manufacturing processes.
- Evaluate value of kinetic modeling as a *general purpose tool* to allow fabs to estimate and identify *potential* emissions arising from thermal treatment of a range of process exhausts containing a range of various species.

ESH Metrics and Impact

The primary ESH metric addressed through judicious application of kinetic modeling is

- Reduction in emission of ESH-problematic material to environment Specifically, kinetic modeling is used for
- *Identification* of *potential* emission species prior to new process being implemented or new chemicals being employed.
- *Suggestions* for methods of pollutant emission abatement.
- Kinetic modeling alone, without an accurate mixing model, is NOT used for
- *Quantitative* predictions of pollutant emissions from a *specific* device.
- *Quantitative* predictions of performance of a *specific* burner or thermal treatment system
- Integrating an accurate detailed kinetic model into an accurate CFD code to describe mixing is currently outside the capabilities of most simulation codes.
- Methods that approximate either the kinetics or the mixing fluid mechanics can provide additional insight into specific POU devices.

What is kinetic modeling?

- Allows prediction of concentration behavior of many species (~100's) interacting with each other through many reactions (~1000's).
 - Particularly useful for estimation of trace species concentrations in combustion processes
- Requires an accurate kinetic mechanism –see following slide
- Requirements for a mechanism
 - Specified environment (e.g. heat loss, initial condition, initial temperature.
 - Specified idealized reactor configurations
 - Plug flow reactor (no back mixing)
 - Well stirred reactor (perfectly back-mixed)
 - Plug flow reactor with admixing of reactants along length
 - Combinations of the above

What is required for a useful kinetic mechanism

- 1. List of stable and unstable species that are of interest.
 - 1. Usually requires some expert judgment.
- Thermodynamic properties of these species heats of formation, entropy of formation, specific heat as a function of temperature.
 - 1. Much is available in the literature
 - 2. Missing data can be calculated from first principles molecular theory and some expert judgment.
 - 3. Required (needed) for thermodynamic consistency.
 - 4. Required for calculation of reverse reaction constants.
 - 5. Required for equilibria concentrations at a given T and P

<u>What is required for a useful kinetic</u> <u>mechanism (Continued)</u>

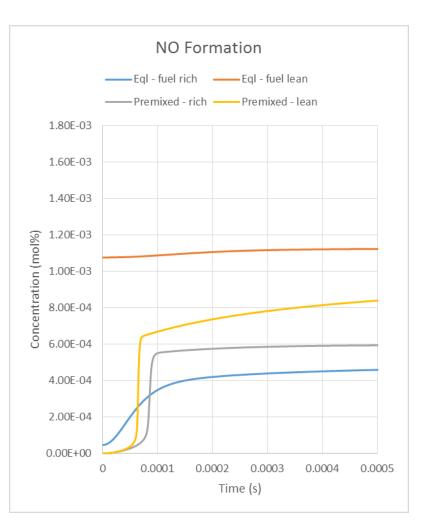
- List of important (elementary) chemical reactions between these species
 - Usually requires some judgment, although it can be automatically generated.
- Chemical reaction rate coefficients for each reaction
 - Much is available in the literature for C, H, N, O, S, Cl, F, Hg.....
 Systems up to species involving 2 or 3 carbon atoms.
 - Can be estimated using molecular theory, similarity rules, and expert judgment
 - Up to C₂ hydrocarbon species.
 - Probably not yet possible for reactions involving complex molecules.

We shall comment on currently available mechanisms later

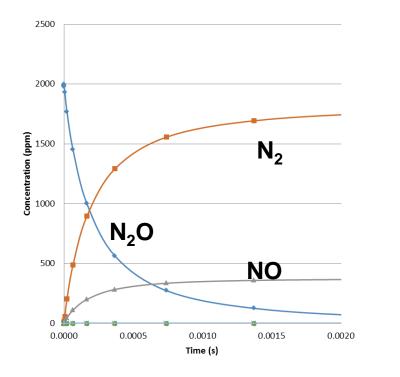
Example: Using kinetic modeling to explore <u>N₂O abatement</u>

- Issue: when and how does N_2O entering a combustion chamber leave as NO or NO_2 ?
- Approach
 - Use existing (and validated) kinetic mechanism: GRIMech 3.0
 - Optimized mechanism describing NO formation and destruction during the combustion of natural gas (CH_4/Air)
 - Developed by the University of California at Berkeley [Smith, *et al.*, 2000, http://www.me.berkeley.edu/gri_mech]
 - 53 species, 325 reactions.
 - Input designed for CHEMKIN II software, NASA Thermodynamics Format
 - Validated by 77 comparisons with experimental data ("Targets")
 - Ignition delay data from shock tubes
 - Flame speed data
 - Species profiles in flames and reactors

Example: Using kinetic modeling to explore <u>N₂O abatement (continued)</u>


- Approach (continued)
 - Explore behavior in isothermal plug flow reactor
 - 3 Temperatures 1700K, 2000K, 2200K
 - 2 Stoichiometries Fuel rich SR=0.7; Fuel lean SR=1.1
 - N_2O injected a) with fuel b) into post flame
 - Extend to complex (mixed) reactor configurations
- Results showed
 - NO was formed from N_2O
 - Conversion to NO depended on stoichiometry and temperature
 - Conversion to NO can be minimized through judicious mixing arrangements of fuel and air.

N₂O reactions in GRImech


Reaction	A (cgs)	В (К)	E _A (cal/mol K)	Source
$N_2O + OH \leftrightarrow N_2 + HO_2$	0.200E+13	0.000	10000.000	JAM 9/87
$N_2O + O \leftrightarrow 2 NO$	0.100E+15	0.000	28200.000	PG
$N_2O + M \leftrightarrow N_2 + M + O$	6.900E+23	-2.500	64760.000	Bowman 1991
$N_2O + H \leftrightarrow N_2 + OH$	0.760E+14	0.000	15200.000	NH3 CST
$N_2O + O \leftrightarrow N_2 + O_2$	0.100E+15	0.000	28200.000	PG
$CN + N_2O \leftrightarrow NCO + NO$	0.100E+14	0.000	0.000	JAM
$NCO + NO \leftrightarrow N_2O + CO$	0.100E+14	0.000	-390.000	PEERY
$NH + NO \leftrightarrow N_2O + H$	1.400E+14	0.000	12700.000	Bowman 1991
NNH + O \leftrightarrow N ₂ O + H	0.100E+15	0.000	0.000	

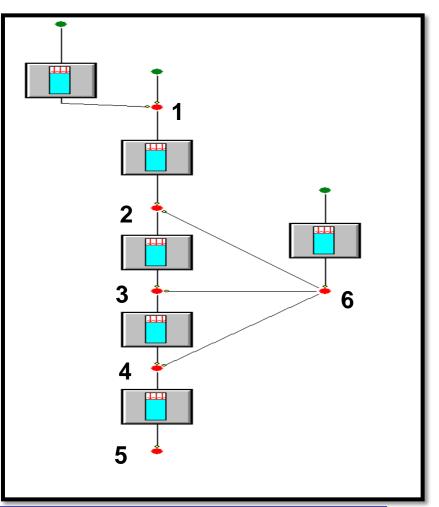
$\frac{Kinetic \ Calculations \ for}{N_2 O \ to \ NO - NO_x \ Formation}$

- NO_x formation results show trends consistent with results found in the literature:
 - Fuel lean conditions \rightarrow increased NO_x production
 - Higher temperatures \rightarrow increased NO_x production
 - Premixing the N₂O and fuel
 → increased NO_x production in fuel lean conditions

<u>N₂O conversion in (premixed) CH₄/O₂/Ar</u> <u>flames (N₂ from N₂O only – no air)</u>

SR = 1.1, T = 1700K

>80% of the N₂O reacted to become N₂, remainder became NO_x


2500 2000 1500 1000 500 0,000 0,0005 0,0010 0,0015 0,0020 Time (s)

SR = 0.7, T = 1700K

>95% of the N₂O reacted to become N₂, remainder became NO_x

Modlink Process Model: Combinations of Reactor Types

- The model was constructed as a series of plug flow reactors (PFR) in REI's process flow software, Modlink.
- Grey boxes represent PFRs, colored nodes represent streams.
- Additional PFR at the top represents fuel/N₂O mixing
- Composition can be obtained from any of the nodes and major species concentrations tabulated. Detailed time, temperature, and composition history can be obtained from each PFR.

Example Node Compositions

Species	Node 1	Node 2	Node 3	Node 4	Node 5
CH ₄	0.397	0.032	0.000	0.000	0.000
СО		0.000	0.001	2 ppm	< 1 ppm
CO ₂		0.080	0.100	0.096	0.096
H ₂		0.000	0.001	0.000	0.000
H ₂ O		0.161	0.200	0.193	0.193
N ₂		0.662	0.690	0.700	0.700
N ₂ O	0.034	0.003	< 1 ppm	< 1 ppm	< 1 ppm
NO		7 ppm	106 ppm	74 ppm	74 ppm
0 ₂	0.564	0.062	0.008	0.011	0.011
ОН		0.000	0.000	0.000	0.000
SR	0.73	0.99	1.04	1.06	1.06

Possible Future work – Two Approaches

- 1. Develop stand alone tools for fab personnel to explore potential issues by themselves
 - Software provided to fab.
 - Fab personnel must first specify which elements, or species are of interest
 - Individual kinetic mechanism sets (similar to GRI Mech 3.0) can then be established – one set for one application - and provided to customer.
 - Requires literature search or
 - Theoretical calculations for kinetic rate coefficients
 - Should be possible for simple hydrocarbons and F, Si, Hg and some other elements.
 - Example: current theoretical work (Bozzelli lab, 2014) has shown that poly-fluorinated compounds are more stable (i.e more difficult to react) than singly-fluorinated compounds.
- 2. Explore specific problems requested by fab personnel
 - Contractor rather than fab personnel conducts calculations
 - Transmits results, not the enabling software, to customer

BUT work is needed on mechanism development (see next slide)

<u>Current status of chemical kinetic mechanisms</u> <u>available for chemical kinetic modeling.</u>

- 1. Mature and validated mechanisms (can be used by non experts)
 - a) C_1 hydrocarbon combustion with NO formation and destruction
 - b) NH_3 , HCN, N_2O formation and destruction with C_1 hydrocarbon combustion.
- 2. Established mechanisms with limited validation (to be used at your own risk)
 - a) Expansion of 1a and 1b to include C_2 and (some) C_3 hydrocarbons.
 - b) Expansion to include chlorine and chlorinated compounds including chlorinated hydrocarbons $(C_1 C_2)$.
 - c) Expansion to include reactions involving sulfur, and mercury
- 3. Work in progress (needs development before use, although prediction methods exist molecular simulation etc.)
 - a) Expansion to include reactions involving fluorine and fluorinated hydrocarbons (incomplete mechanism with no validation might be available).
 - b) Expansion to include reactions involving silicon, arsenic and trace metals at high temperature (?).
 - c) Expansion to higher hydrocarbons, C_4 and above.

Conclusion

Chemical kinetic modelling is a useful tool *today* to predict the fate of N_2O in POU combustion systems, and has the potential, with additional work, to be a useful tool *tomorrow* to predict the fate of other compounds containing additional elements, such as chlorine, fluorine, silicon and arsenic.

Acknowledgements

- Joseph W Bozzelli, Professor of Chemistry, Newark Institute of Technology
- Michael Bockelie, Vice President, Reaction Engineering International
- Rand Pummill, Senior Engineer, Reaction Engineering International
- Farhang Shadman, Regents Professor, University of Arizona