<u>Contactless Metal Electrodeposition for</u> <u>3D Packaging Applications</u>

PIs:

- Manish Keswani, Materials Science and Engineering, UA
- Farhang Shadman, Chemical and Environmental Engineering, UA

Graduate Students:

- Mingrui Zhao, PhD student, Chemical and Environmental Engineering, UA
- Rajesh Balachandran, PhD student, Materials Science and Engineering, UA

Undergraduate Student:

• Jennie Allred, Materials Science and Engineering, UA

Industrial Mentors:

- Steven Verhaverbeke, Applied Materials, Inc.
- Roman Gouk, Applied Materials, Inc.

Cost Share (other than core ERC funding):

- \$50k from Applied Materials, Inc. (gift funds)
- \$25k in-kind donation (reactor, wafers)

Through Silicon Via (TSV) Technology

Model of stacked chips with TSV connections

> TSV- key technology in 3D integrated circuit (IC) Packaging

- Shortest chip to chip interconnections
- > Integration of different functional devices into one package
- > High interconnection density, lower power and good reliability

Figure source: ADEKA's additive for copper plating ideal for TSV, *Silicon Semiconductor Magazine*, 2013.

<u>Challenges – Conventional Process</u>

 ➢ Filling of high aspect ratio vias (1-200 µm width, up to 20-50 aspect ratio) with Cu at high rates without formation of voids
 ➢ Keeping Cu overburden to a minimum to reduce CMP cost

Commonly Used Additives - ESH and Process Impact

Leveler: Thiourea

- Oral LD₅₀ = 125 mg/kg (rat)
- health hazard rating of 3
- Toxic and suspected to cause cancer

- Subcutaneous LD₅₀ = 1500 mg/kg (mouse)
- health hazard rating of 2
- Considered a hazardous substance according to OSHA.

Accelerator: 3-Mercapto-1-propanesulfonic Acid Sodium Salt

Accelerator: bis(sodiumsulfopropyl) disulfide

Oral LD₅₀ = 300 mg/kg (mouse)
Hazardous decomposition products at high temperature

Additives may also reduce the quality and reliability of deposited metal when they get embedded in the metal

Proposed Contactless Electrodeposition Process

- * Front side of wafer consisting of vias contacts with $CuSO_4 H_2SO_4$ with Cu anode immersed in it.
- * The backside of wafer contacts SiO_2 etching solution with Pt cathode immersed in it.

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Economic and ESH Benefits of Contactless Process

Sottom up approach leading to high metal deposition rate and excellent uniformity

***** Elimination of void or seam formation w/o additives

Minimization of CMP step and associated chemical usage, lower amount of waste and related disposal issues

* Better monitoring and regulation of electrodepositon bath due to absence of additives

Feasibility Study

Effect of Solution Temperature and HF Concentration on Current Density (Ni Deposition)

Solutions with higher total F (49% HF) attained current densities as high as 220 mA/cm² at room temperature (20°C), while a 3% HF solution exhibited only about 115 mA/cm²

Etching of silicon dioxide important in regenerating the silicon surface for achieving higher deposition rates.

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effect of Stirring of Deposition/Etching Solution on Current Density (Ni Deposition)

Oxidation and etching reactions more important than metal ion diffusion for achieving higher overall current density for deposition

Effect of Etching Solution Composition on Current Density (Ni Deposition)

- NaF solution may be used as an alternative etching solution (instead of HF) in this process.
- Below pH = 6, there is a rapid increase in current density, which reaches maximum at pH = 3 in the investigated pH range of 3-10.

Summary and Future Work

> Summary

Feasibility of contactless process demonstrated with high deposition rates and excellent uniformity w/o additives for blanket films

Future work

- Conduct studies on patterned wafers with vias of different sizes, aspect ratios and profiles
- Establish correlations between morphological, crystallographic, microstructural, chemical, and mechanical properties of the electrodeposited metal and process parameters
- > Develop a process model for transport and deposition of metals
- > Extend the use of technique to metals beyond copper and nickel

Industrial Interactions and Publications

• Industrial Interactions

- Regular (monthly) discussion meetings with Applied Materials, Inc.
- Feedback provided by Dr. Steven Verhaverbeke and Dr. Roman Gouk (Applied Materials, Inc.) on industry process requirements and new trends

• Publications

- Z. Patterson, C. Weber, R. Balachandran, R. Gouk, S. Verhaverbeke and M. Keswani, A Technique for Contactless Copper Electrodeposition for 3D Packaging Applications, *ECS Electrochem. Lett.*, **3** (10), D41-43 (2014).
- C. Weber, Z. Patterson, M. Zhao, R. Balachandran, R. Gouk, S. Verhaverbeke, F. Shadman and M. Keswani, Investigations of Solution Variables in a Contactless Copper Electrodeposition Process for 3D Packaging Applications, *Mater. Sci. Semicond. Process.*, **30**, 578-584 (2015).
- M. Zhao, R. Balachandran, Z. Patterson, R. Gouk, S. Verhaverbeke, F. Shadman and M. Keswani, Contactless Bottom-Up Electrodeposition of Nickel for 3D Integrated Circuits, Under Review in *RSC Advances* (2015)