NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Program Overview

February 23, 2006

Participating Institutions

- University of Arizona
- MIT
- Stanford University
- UC Berkeley

Founders 1996

- Cornell University (1998)
- Lincoln Laboratory (1998)
- Arizona State University (1998 2003)
- University of Maryland (1999-2003)
- Purdue University (2003)
- Tufts University (2005)
- Columbia University (new; starting April 2006)

Statistics on the Growth of the ERC

Program Organization

Thrust A BEOL Processes	 Environmentally Benign Etching of BEOL Dielectrics Solventless Low-k Dielectric Novel Barrier Film Deposition Methods CMP Waste Minimization 	
	Environmentally Benign Planarization	
	Novel Surface Cleaning and Passivation	
Thrust B	Selective Deposition for Gate Stack Manufacturing	
FEOL Processes	Etching of New High-k and Electrode Materials	
ſ	Low-Energy Water Purification and Wastewater Treatment	
Thrust C	Efficient Wafer Rinsing and Cleaning	
Factory Integration	Water Recycle and Reuse	
	Integrated ESH Impact Assessment	
Thrust D	Solventless Lithography	
Patterning	Additive Processing	
Education	ESH Concepts in Science/Engineering Curricula Continuing Education and Short Courses Outreach	

ERC Mission and Objectives

- 1. Research to develop science and technology leading to simultaneous <u>performance</u> <u>improvement</u>, <u>cost reduction</u>, and ESH gain
- 2. Incorporating ESH principles in engineering and science education
- 3. Promoting <u>Design for</u> <u>Environment and</u> <u>Sustainability as a Technology</u> <u>Driver and not a burden</u>

Design for Environment and Sustainability is a Technology Driver

Examples of ERC

Strategies, Project, and Highlights

Design for Environment and Sustainability is a Technology Driver

Strategy 1: Low ESH-Impact through Alternate Chemistries

Alternate Chemistries and Processes for Etching

Reif (MIT), Graves (UCB)

Applications of Supercritical Carbon Dioxide

Ober (Cornell), Muscat (UA)

2. Novel photoresist chemistries and photo-imageable dielectrics

Air for Low-k: ESH Gain and Performance Gain Gleason (MIT)

% porosity

Dielectric Constant = 1.4 Refractive Index = 1.067

 $\circ \circ \circ$

Alternating Bead/OSG Deposition: Controls Degree of Porosity

Wu, Ross, Gleason; Plasma Proc. Poly. 2, 401 (2005).

Air for Low-k: ESH Gain and Performance Gain

Gleason (MIT)

Ultimate Dielectric Air Gap by CVD Process

- All dry
- Simplified process
- No hardmask
- RIE resist strip
- With better lithography, smaller feature sizes can be fabricated.

E _(FC)	=	1.73
٤ _{Air}	=	1.00
EE eff	~	1.30 – 1.35

Low-k dense material + Porosity + Air gap = Aggressive low-k approach

Chan, Gleason; J. Electrochem. Soc. (in press)

Design for Environment and Sustainability is a Technology Driver

Strategy 2: Integration of Process Steps

Example: Integrated Deposition and Patterning of Low-k Dielectrics

ESH Gain by Integrated Deposition and Patterning of Low-K

Gleason (MIT), Ober (Cornell)

ESH Gain by Integrated Deposition and Patterning of Low-K

Gleason (MIT), Ober (Cornell)

ESH Gain by Integrated Deposition and Patterning of Low-K

Gleason (MIT), Ober (Cornell)

Solventless Deposition of Low-k Dielectrics

Gleason (MIT)

Design for Environment and Sustainability is a Technology Driver

Strategy 3: Replace Subtractive Processing with Additive Processing

- Current semiconductor manufacturing process sequence is primarily <u>subtractive</u>
- ESH goal: Innovations which make the manufacturing sequence primarily <u>additive</u>

Additive Process for High-k Gate-Stack Fabrication

Bent, Chidsey, McIntyre, Saraswat (Stanford), Muscat (UA)

Design for Environment and Sustainability is a Technology Driver

Strategy 4: All-Out Effort Against Major Obvious Culprits

CMP: large material/energy usage, large waste, high cost

ESH Gain Through Slurry Use Minimization

Philipossian, Raghavan (UA), Boning (MIT), Beaudoin (PU)

ESH Gain through study of slurry/pad/wafer interactions and pattern dependency, novel pad and chemistries, process control, and alternative planarization techniques (e.g. AFP, CAP, and ECMP)

<u>Reducing CMP and Associate Waste</u> By Selective Deposition of Metal and Dielectrics

Design for Environment and Sustainability is a Technology Driver

Strategy 5: ESH Impact Assessment of New Materials and Processes

Life Cycle Analysis (LCA) Comprehensive Impact Modeling (Performance, Cost, and ESH)

ESH Impact of New Processes and New Materials

McRae (MIT), Dornfeld (UCB), Rubloff (UM), Blowers (UA)

SiF₄, F₂, N₂ Developed a new ESH Energy N, Generation Production impact assessment tool Burner SiO₂ CH1,_ Ar, N Waste Air Combined <u>LCA</u> with <u>CoO</u> H, NH Plasma HF, CQ.... Production Production Generator and *performance metrics* Recycled[▶] NF₃ Water CO₂, Scrubber+ Production HF • Developed method for CVD HF F_2 NF₃ Chamber Production Production handling uncertainties HF(aq.) KF Central Production Ca(OH) Treatment **Ozone Depletion** CaF₂, HF(aq) **Human Toxicity** (non-cancer) **Upper Stream** Cleaning Downstream Process Production Disposal **Human Toxicity** (cancer) **Photochemical** Smog Needed in the early stage of PM10 Effects research planning Acidification H H **Potential** • Cost effective нll **Global Warming** Impacts • Design for Environment and 1.E-09 1.E-07 1.E-03 1.E-01 1.E+01 1.E-05 Sustainability (pro-active 25% 75%

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

approach)

F, Cleaning

NF₃ Cleaning

50% 95%

5%

Biochip for Rapid Toxicity Testing of New Chemicals

Mathine, Runyan (UA)

- Rapid assessment of chemicals and process chemistries
- Important for both chemical suppliers (starting materials) and equipment suppliers/end users (for process-generated byproducts, interactions of multiple chemicals, proprietary chemistries in R/D stage, etc.)
- A first step towards an online ESH monitor.

Novel Technology

Disclosure filed for patent application

Design for Environment and Sustainability is a Technology Driver

Strategy 6: Minimize Use of Natural Resources

Example: Water and Energy Use Reduction

Water Sustainability Strategies

Low-Water Rinsing and Cleaning of Micro- and Nano-Features

Shadman (UA), Vermeire (ASU)

Low water rinse technology requires:

- 1. Metrology for real-time and on-line monitoring of surface contamination
- 2. Understanding the process bottleneck in the complex combination of process steps

Low-Water Rinsing and Cleaning of Micro- and Nano-Features

Shadman (UA), Vermeire (ASU)

Water Recycling Technology

Low-Energy Wastewater Treatment

Baygents, Farrell, Field, Ogden, Raghavan, Sierra, Shadman (UA)

Selected Facts/Figures

- Research: 58 research projects; average of 25 peer-reviewed publications/year
- 48 national/international awards and fellow positions for students; many institutional fellowships and scholarships
- 21 national/international awards for faculty
- Technology Development: 16 patents
- Technology Transfer: 28 joint ventures with member companies
- Five new spin-off companies
- \$1 M endowed chair

Education and Outreach

- Pre-University Outreach
 - Wide range of activities (example: <u>Teachers Institute</u> for science teachers; 73 teachers from 25 schools have participated and graduated)
 - 74 REU undergraduates (60% are women and minorities)
- University Education:
 - Industry internship for students
 - Research experience for undergraduates
 - New courses in *benign manufacturing*
- Post-University Education:
 - 36 short courses and workshops for practicing scientists and engineers; weekly Tele-Seminars; distance learning courses; internships for industry residents at universities; faculty sabbaticals sponsored by industry

ERC Membership and Affiliate List

- Advanced Micro Devices, Inc.
- Air Products and Chemicals, Inc.
- Applied Materials, Inc.
- Arkema, Inc.
- Asahi Sunac Corporation
- Axcelis Technologies, Inc.
- BOC
- Cabot Microelectronics Corp.
- Cadence Design Systems
- Degussa AG
- DuPont Corp.
- Freescale Semiconductor, Inc.
- Fujikoshi Machinery Corp.
- Fujimi, Inc.
- Hitachi Chemicals Co., Ltd.
- IBM Corp.
- Industrial Tech Research Institute (ITRI)
- Infineon Technologies
- INOAC
- Intel Corp.

- LSI Logic Corp.
- National Inst. Standards and Tech. (NIST)
- NeoPad
- Novellus Systems, Inc.
- Pall Corp.
- Philips
- Powerchip Semiconductor Co.
- Praxair, Inc.
- Samsung Electronics Co.
- SCP Global Technologies
- SEMATECH
- Semiconductor Industry Association (SIA)
- Showa-Denko Inc.
- ST Microelectronics
- Texas Instruments, Inc.
- Tokyo Electron, Ltd.
- TSMC
- United Microelectronics Corp.

Faculty Awards in 2005

- Steve Beaudoin: Student Government Teaching Excellence Award, Purdue
- Paul Blowers: Award for Excellence at the Student Interface, UA
- Karen Gleason: Franciscus C. Donders Visiting Prof Chair, University of Utrecht
- Anthony Muscat: da Vinci Circle Fellow, UA
- Chris Ober: ACS Award in Applied Polymer Science
- Chris Ober: Elected Vice President of the IUPAC Polymer Division
- Chris Ober: Xerox Lecturer at the Canadian High Polymer Forum
- Ara Philipossian: Takagi Prize, Japan Society for Precision Engineering
- Rafael Reif: Provost, MIT
- Farhang Shadman: Regents Professor, UA

Student Awards in 2005

- Katy Bosworth (Cornell): IBM Fellowship
- Drew Forman (Cornell): SRC Fellowship
- Darren DeNardis (UA): Thomas Chapman Fellowship
- Darren DeNardis (UA): Outstanding Paper Award, VLSI/ULSI Multilevel Interconnection Conference
- Umur Yenal (UA): Environmental Scholarship from SEAEMS
- Daniel Rosales-Yeomans (UA): Best Paper Award, NMS: Environment, Safety, and Health
- Zheng, X. (UA): Outstanding Paper Award, Electronic Computational Chemistry Conference
- Ashok Muthukumaran (UA): National Association of Corrosion Engineers Graduate Scholarship
- Caprice Grey (Tufts): Provost Fellowship

ERC Financial Status

ERC Fundraising Commitment: Affiliate/intl membership; research grants; institutional costsharing, etc.

Base Funding: Core members through SRC and ISMT
Core Projects Selected for 2006-2007

- 1. An Integrated, Multi-Scale Framework for Designing Environmentally-Benign Copper, Tantalum, and Ruthenium Planarization Processes
- 2. CMOS Biochip for Rapid Assessment of New Chemicals
- 3. Destruction of Perfluoroalkyl Surfactants in Semiconductor Process Waters Using Boron-Doped Diamond Film Electrodes
- 4. EHS Impact of Electrochemical Planarization Technologies
- 5. Environmentally Benign Electrochemically Assisted Chemical Mechanical Planarization (E-CMP)
- 6. Environmentally Benign Vapor Phase and SC CO₂ Processes for Patterned Low- k Dielectrics
- 7. Environmentally-Friendly Cleaning of New Materials and Structures for Future Micro-and Nano-Electronics Manufacturing
- 8. Low Environmental Impact Processing of sub-50 nm Interconnect Structures
- 9. Low-Water and Low-Energy Rinsing and Drying of Patterned Wafers, Nano-Structures, and New Materials Surfaces
- 10. Non-PFOS/non-PFAS Photoacid Generators: Environmentally Friendly Candidates for Next Generation Lithography
- 11. Reductive Dehalogenation of Perfluoroalkyl Surfactants in Semiconductor Effluents

February 23, 2005

Agenda

- Overview ... Philipossian ... 5 min
- Task A 1 ... Boning ... 5 min
- Tasks A 2 1 and A 2 2 … Gleason … 10 min
- Planarization LRP, Tasks A 4 2, A 5, A 6 3, A – 7, A – 8 and A – 10 … Philipossian … 20 min
- Tasks A 4 1, A 6 1, A 6 3 and A 9 …
 Boning … 15 min
- Q & A ... 5 min

Tasks ... 3D ICs and LK Dielectrics

- Total of 4 PIs and 6 PhD students
- A 1 ... Environmentally Benign Manufacturing of 3D ICs
 - Prof. D. Boning (MIT)
 - Prof. P. Gschwend (MIT)
 - Prof. R. Reif (MIT)
- A 2 1 ... Solventless LK Dielectrics
 - Prof. K. Gleason (MIT)
- A 2 2 … Environmentally Benign Precursors for Pore Scaling and Repair of Porous LK Films
 - Prof. K. Gleason (MIT)

Tasks ... Planarization

- Total of 6 PIs, 18 PhD students, 2 undergraduate students, 1 post-doc, 1 consultant and 2 visiting researchers
- A 4 1 … Modeling of Pattern Dependency Effects
 Prof. D. Boning (MIT)
- A 4 2 ... Fluid Dynamics Analysis and Tribological Characterization
 - Prof. A. Philipossian (UA)
 - Prof. C. Rogers (Tufts)
 - Prof. V. Manno (Tufts)
- A 5 ... Fundamental Pad Characterization
 - Prof. A. Philipossian (UA)

Tasks ... Planarization (continued)

- A 6 1 ... ECMP of Copper
 - Prof. S. Raghavan (UA)
- A 6 3 ... Coupled Plating and Planarization
 - Prof. D. Boning (MIT)
- A 6 4 … Controlled Atmosphere Polishing & Novel Pad Conditioning
 - Prof. A. Philipossian (UA)
- A 7 ... Post-Planarization Cleaning Waste Minimization
 - Prof. A. Philipossian (UA)

Tasks ... Planarization (continued)

- A 8 ... Fundamental Characterization of Diamond Wear in CMP
 - Prof. A. Philipossian (UA)
- A 9 … Environmentally Benign Copper Planarization for Advanced IC Manufacturing
 - **Prof. S. Beaudoin (Purdue)**
- A 10 … Mechanistic Study of Novel Orbital Polishers for Copper CMP
 - **Prof. A. Philipossian (UA)**

Unit operation	2D process flow	Additional 3D processes in flow	
	(for one wafer)		
Photo/Stepper/Ashing	25	1	
Dry Etch	13	2	
Wet Etch/Clean	31/14	3/4	Critical step:
CVD	11	1	handle wafer
СМР	14	2	a release
Sputtering Al	1 (0.5 µm for metal 1)	2 (20	μm)
Sputtering Ta/Cu	6	1	
Electrodeposition Cu	6	1	
Bonding	0	2	
Grinding	0	1	

Overall comparison	Al release	Smart cut	Oxide release	Overall comparisons of different handle wafer options are considered
Yield (performance)	10% - depends on Cu-Cu bonding and mass transfer of acid	80% - work with oxide bond subjected to CMP oxide	80% subjected to functionality – as layer transfer is yet to be proven	 Performance here primarily is denoted by yield Cost are estimates and are
Cost -additional	Cost for depositing Al on Si wafer which means 1.2 X	Cost for H ₂ implantation which is 10 X	Oxidation, etch along with one CMP which means 1.2X	 expressed in terms of one Si wafe Additional means processes require for that handle wafer option
Environmental - additional	Illustrated very brief	ly in table below.		Environmental comparison of different bondle water entities
	T., .	1-	1	
Environmental comparison for additional steps	Al release	Smart cut	Oxide release	
Environmental comparison for additional steps Energy	50-100 KWH primarily Al sputtering	20-40 KWH primarily H ₂ implant	Oxide release	 Energy has been estimated based on which processes are energy intensive in that option Water usage – process cooling water (PCW), de-ionized (DI) water
Environmental comparison for additional steps Energy Water	AI release 50-100 KWH primarily AI sputtering Primarily PCW for cooling AI dep./ Wel etch requires DI water	20-40 KWH primarily H ₂ implant PCW for implantation, CMP and annealing	Oxide release 10-20 KWH oxidation, CMP, Photo and etch PCW for oxidation, etching and CMP, DI water for wet etch in 49% HF	 Energy has been estimated based on which processes are energy intensive in that option Water usage – process cooling water (PCW), de-ionized (DI) water for cleaning Chemical Inputs depend on process and probable outputs are listed
Environmental comparison for additional steps Energy Water Chemical (inputs)	AI release	Smart cut 20-40 KWH primarily H ₂ implant PCW for implantation, CMP and annealing H2, SiH2CI2, O2, CMP slury, piranha	Oxide release 10-20 KWH oxidation, CMP, Photo and etch PCW for oxidation, etching and CMP, DI water for wetch in 49% HF SiH2CI2, O2, CMP SiH2CI2, O2, CMP piranha, photoresist	 Energy has been estimated based on which processes are energy intensive in that option Water usage – process cooling water (PCW), de-ionized (DI) water for cleaning Chemical Inputs depend on process and probable outputs are listed Contrast manufacturing fluxes with estimates of natural fluxes (e.g., Ta)

Solventless Low k Dielectrics (Task 425.001: ERC EBSM)

Tom Casserly⁺, Kelvin Chan⁺*, April Ross⁺ and Karen Gleason Department of Chemical Engineering Massachusetts Institute of Technology

> *now at Applied Materials +SRC Fellowships

Evolution of Low-k Dielectrics

Either increasing fragile porous low k materials must be integrated

or

A robust sacrificial layer must be integrated which can form air in the final step (sacrificial layer = 100% porogen)

"Let's face it. The air gap is a pretty crazy idea. Rather than filling the space between interconnecting wires with anything that would increase line-to-line capacitance and RC delay, just go straight for the best performing low-k dielectric of all: Air. More unusual things have happened. Like effectively taking sandpaper to your device — later perfected into the state-of-the-art technology of CMP."

Laura Peters, Senior Editor -- 1/1/2005, Semiconductor International

• Havemann and Jeng (TI), US Patent 5461003, 1995.

• Anand *et al., IEEE*, 1997.

"For solids in which all atoms are able to form two or more bonds, the percolation of rigidity occurs at an average connectivity number of 2.4*"

* J. Phillips, J. Non-Cryst. Solids 34, 153 (1979)

Ross AD and Gleason KK, J. Appl. Phys. 97, 113707 (2005)

100% T groups gives a matrix just at the percolation threshold

Density Functional Theory for OSG Precursors

Air-Gap Fabrication

- Ordinary Sacrificial Materials
 - Require physical contact with etchant/solvent for selective removal
 - Surface-tension problems for wet processes

Self-Decomposing Sacrificial Materials

- Requires no agent for removal
- Dry removal process (heat, UV, e-beam)
- Allow fabrication of closedcavity structures

CVD sacrificial layers

- evolutionary from CVD silicon dioxide and from OSG low k materials
- □ environmentally attractive

Plasma Enhanced

 nonselective chemistry
 uncontrolled crosslinking which gives rise to char formation: unsuitable for sacrifical layers

Initiated

- selective bond scission
- systematic compositional variation using feed gas
- controlled cross-linking
 - □ increases solvent stability (insolubility, lack of swelling)
 - increased thermal stability
 - increased mechanical strength
 - □ designed to prevent char formation

- iCVD process characteristics:
 - □ low energy input (<10 watts for 200 mm wafer)
 - □ low-temperature process
 - (substrate at ~ room temperature)
 - no ion bombardment or UV irradiation (no plasma)
 - □ All-dry process, no worker exposure to solvents

CVD Sacrificial Layer Chemistry

monomer cyclohexyl methacrylate (CHMA) crosslinker ethylene glycol dimethacrylate (EGDMA) initiator tert-butyl peroxide

Stable under normal temperatures and pressures. Hazardous Decomposition Products: carbon monoxide, carbon dioxide. Hazardous Polymerization: Will not occur. Potential Health Effects: Causes eye and skin irritation.

Carcinogenicity: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA.

Stable under normal temperatures and pressures.

Irritating to respiratory system.

LD50/LC50: Oral, mouse: LD50 = 2 gm/kg; Oral, rat: LD50 = 3300 mg/kg. Carcinogenicity: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA

Stability : Explosive if heated, subjected to shock, or treated with reducing agents. Highly flammable. Refrigerate. IPR-RAT LD50 3.210 g/kg : ORL-RAT LD50 > 25 g/kg Carcinogenicity: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA

Cross-link Density (FTIR & XPS)

degree of crosslinking can be systematically adjusted
 impossible to spin cast insoluble crosslinked material

Control using Surface Concentration

Quartz Crystal Microbalance (QCM) measures surface concentration of monomer, [M], in the absence of reaction

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Film Properties

- Does not dissolve in any commonly used solvents: photoresist can be removed by dissolution instead of ashing.
- Decomposition > 99.7% by thickness (VASE). Crosslinking via the dimethacrylate monomer is key.
- Onset temperature of decomp. ~ 270 °C (ITS)
- Good adhesion to substrate and photoresist
- High etch rate in oxygen RIE (0.35 µm/min). Eliminates the need for a hard mask, an economic and environmental improvement over previouslyreported spin-on sacrificial materials

Fabrication

•no hardmask•RIE resist strip

With better lithography, smaller feature sizes can be fabricated.

- Local bonding environments in OSG films determine mechanical strength: all "T" groups represents a percolation of rigidity limit.
- Density functional theory (DFT) calculations for new precursors predict the likelyhood of formation of local bonding environments in OSG films.
- iCVD sacrificial layers represent a evolutionary and environmentally friendly strategy for the integration of air gaps.
 - controllable crosslinking which cleanly degrades
 - □ no hardmask required for fabrication

<u>Thrust A</u> Planarization Long Range Plan

February 23, 2006

Principle Investigators

- Prof. Ara Philipossian (University of Arizona)
- Prof. Duane Boning (MIT)
- Prof. Srini Raghavan (University of Arizona)
- Prof. Vincent Manno (Tufts University)
- Prof. Chris Rogers (Tufts University)
- Prof. Stephen Beaudoin (Purdue University)

Planarization Advisory Committee Members

- Dr. Paul Fischer (Intel)
- Dr. Laertis Economikos (IBM)
- Dr. Cliff Spiro (Cabot Microelectronics)
- Dr. Chris Borst (Texas Instruments)

Landscape for the Next 5 Years

- Research, fundamental in nature yet industrially relevant, addressing the technical, economic and environmental challenges of <u>planarizing</u> the following materials:
 - Copper
 - Tantalum and tantalum nitride
 - Ruthenium
 - Dielectric (for STI only)

Gaps to be Filled in the Next 5 Years

- Advanced processes and consumables (i.e. pads and chemical solutions) for electrochemically assisted planarization
- Advanced processes and consumables (i.e. chemical solutions, abrasive particles, pads and diamond conditioners) for planarization
- Advanced post-planarization cleaning and surface preparation processes and consumables (i.e. chemical solutions and brush rollers)
- Exploratory planarization schemes
 - Controlled Atmosphere Planarization (CAP) or others

Advanced Processes & Consumables for Electrochemically Assisted Planarization

• Pls:

- Prof. Srini Raghavan
- Prof. Duane Boning
- Prof. Ara Philipossian
- Students:
 - 3 Ph.D. students (2 at UA and 1 at MIT)
- Focus will be on the development and implementation of a 'full' process:
 - Clearing of copper (primary focus)
 - Planarization of the barrier layer (secondary focus)

Advanced Processes & Consumables for Electrochemically Assisted Planarization

- Objectives include development & implementation of:
 - Novel chemistries to enhance and control the electrochemical removal and passivation of copper, tantalum, ruthenium, or other future barrier materials
 - Novel pads to ensure electrical contact with isolated copper islands during clearing. This requires development of conducting pad technology, with appropriate mechanical, electrochemical & environmental properties.
 - Modeling and control of patterned wafer performance: the fundamental technological objective is formation of damascene patterned features, and modeling & characterization of tool, pad and wafer interactions for design and control (particularly endpoint detection) are needed to minimize process cost & environmental impact.

• Pls:

- Prof. Duane Boning
- Prof. Ara Philipossian
- Prof. Vincent Manno
- Prof. Chris Rogers
- Prof. Stephen Beaudoin
- Students:
 - Seven Ph.D. students (3 at UA, 1 at MIT, 2 at Tufts and 1 at Purdue)

- Focus:
 - Basic scientific investigations of the controlling processes in planarization of advanced materials over several length scales and levels of complexity.
 - Development of validated, science-based descriptions that relate specific planarization process and material attributes to measurable process outcomes.
 - This understanding will allow environmentally-conscious process and material alternatives to be specified and tested in a rapid manner, and will allow for the rapid feedback of experimental results into the planarization design process

- Objectives
 - Real-time detection and modeling of pattern evolution
 - Develop novel force-spectra endpoint detection methods by determining how various wafer and pad surface states during polish affect the frictional energy in particular frequency bands.
 - Relate these signals to details of the wafer topography evolution by integrating pattern evolution models with the above endpoint or diagnostic signal analysis.

- Objectives (continued)
 - Wear phenomena and their effect on process performance
 - Isolate, quantify and model the hydrodynamic, van der Waals, hydrophobic and electrostatic processes that determine how nanoparticles interact with pads, diamonds and wafers in representative systems and how these interactions evolve with extended use.
 - Develop methods to visualize wafer-pad mechanical interactions in real-time using laser-induced fluorescence
 - Once the fundamentals of pad asperity evolution and the effect of the multitude of contacting bodies on pad asperities are understood, their impact on planarization capability can be modeled, thereby leading to the design of new polishing protocols and consumables that will deliver superior performance but with reduced environmental consequences.

- Objectives (continued)
 - Effect of pad grooving on process performance
 - Empirical and numerical investigation of the effect of various pad designs (materials, groove shapes, dimensions and slant angles) as well as different types of slurries on RR, COF and pad temperature for copper and tantalum CMP
 - Identification and verification of optimal pad designs for technology transfer to 300-mm platforms

Advanced Post-Planarization Cleaning Processes and Consumables

• **PI**

- Prof. Ara Philipossian
- Student
 - One Ph.D. student at UA
- Focus:
 - Fundamental study of the effects of the brush material and nodule design on the frictional force, brush deformation and cleaning efficiency during silicon dioxide, carbide and copper post-CMP cleaning processes.
 - Study will not be limited to new PVA brushes
Advanced Post-Planarization Cleaning Processes and Consumables

- Focus (continued):
 - The potential degradation and performance of brushes as a function of extended use will also be investigated.
 - The ultimate goal of this work is to improve cleaning efficiency as well as extend the life of the PVA brush by understanding the mechanisms and modes of failure during normal and accelerated stress conditions.

1st Generation Modified Langmuir – Hinshelwood Kinetics Model

'n' moles of reactant R in the slurry react at rate constant k_1 with copper film on the wafer to form a product layer <u>L</u> on the surface

$$\underline{Cu} + nR \xrightarrow{k_1} \underline{L} \quad k_1 = A \exp(-E / kT_w) \quad RR = (M_w / \rho)k_1$$

Product layer <u>*L*</u> is subsequently removed by mechanical abrasion with rate constant k_2

$$\underline{L} \xrightarrow{k_2} L \qquad k_2 = c_p \times (COF) \, \rho V \qquad RR = (M_w c_p / \rho) p V$$

Abraded material *L* is carried away by the slurry

$$RR = \frac{M_w}{\rho} \frac{k_1 C}{1 + \frac{k_1 C}{k_2}}$$

Integrating the Role of Temperature in CMP

Reaction Temperature vs. Slurry Flow Rate

Pad Temperature vs. Wafer Size

iCue 600Y75

iCue EP-C7092

Chemical Rate Constant – k1

Mechanical Rate Constant – k2

120 ml per minute

200 ml per minute

Chemical vs. Mechanical Action

In-Situ Thickness Measurement using DELIF on Wafers with 18-micron Etched Wells

Slurry Thickness in the Wafer – Pad Region as a Function of Wafer Pressure (0.5 vs. 6.0 PSI) ... u = 0.34 m/s

2nd Generation Kinetics Model

$$k_1 = \frac{\rho_{ox}}{MW_{ox}} N\Omega f \exp\left(\frac{-W}{kT}\right) \exp\left(\frac{qa}{2kTx}V\right) \qquad RR = \frac{M_w}{\rho} \frac{k_1(k_2 + k_3)}{k_1 + k_2 + k_3}$$

$$k_2 = c_p \mu_k p V$$

$$k_{3} = \frac{-A \exp\left(-\frac{E_{a}}{RT}\right)}{(x_{C} - X)}$$

Dissolution rate (k₃) can be significant as pressure x velocity approaches zero

Fundamental Pad Characterization

New Pad Designs ... Logarithmic Spiral & Floral

Positive Log. and Spiral Grooves Transport fresh slurry into the pad – wafer interface

Negative Log. and Spiral Grooves Discharge spent slurry and by – products away from the pad – wafer interface

Wafer and pad (i.e grooves) rotate in the counter-clockwise direction

Fundamental Pad Characterization

Fundamental Pad Characterization

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Misconception about COF and ULK Delamination

The photograph below and the SEM micrograph are courtesy of Hitachi Chemical

Power of Lim – Ashby Plots

At a given RR, the Log (-) Spiral (+) is less dependent on P (at constant V) This is an advantage in polishing ULK materials where low pressures are required

Fundamental Characterization of Diamond Wear

COF, Temperature and Removal Rate are Tightly Correlated

Fundamental Characterization of Diamond Wear

Fundamental Characterization of Diamond Wear

New Vs. Used PDF Surface Height Comparisons

Fundamental Characterization of Diamond Wear

Monte Carlo Simulation of Conditioning

Fundamental Characterization of Diamond Wear

Conditioning Uniformity Resonance Plots

Planarization Modeling and Optimization

Planarization Modeling and Optimization (Tasks A4-1 and A6-3)

■ Faculty:

□ Prof. Duane Boning, MIT

Students:

□ Hong Cai, PhD Candidate, MIT Mat. Sci. and Eng.

Daniel Truque, SM Candidate, MIT EECS

□ Xiaolin Xie, PhD Candidate, MIT Physics

Research Objectives:

- Process models to minimize slurry, pad, and water in CMP processes, with emphasis on pattern dependent effects in copper and shallow trench isolation (STI) CMP
- Understand and optimize interactions between copper electroplating and planarization

□ Modeling for alternative pads, slurries, and processes (ECMP)

1. Coupled Plating and Planarization

ELECTROPLATING:

New Development: Time-Stepping Plating Model

Goals:

- Jointly design/optimize the plating/CMP process
- Requires model of thickness and time dependencies
- Improve plating model accuracy
- Approach: Approximate geometric model
 - Drawing from *feature-scale* physical models
 - Modifications to achieve chip-scale modeling ability and efficiency

Plated Structures – Profilometry Scans (Å)

Blue: profilometry measurements Red: upper envelop Yellow: local step heights

Chip-Scale Plating Simulation

2. STI Model/Endpoint Integration

- Endpoint detection needed in STI CMP
 - □ Reduce polish time/consumption; reduce dishing/erosion
- Objective: to understand and model friction force evolution during CMP, and relate to motor current signal
- Model Assumption: Friction proportional to
 - □ Topography roughness
 - Coefficient of friction for different %areas exposed during topography evolution

Approach:

- Patterned wafer CMP model calibrated with polished wafer measurements
- □ Wafer surface evolution is predicated with the calibrated CMP model
- □ Friction is estimated with friction model

Experiments:

- Different STI processes/ceria slurries
 - Different oxide/nitride coefficient of friction ratios

2. STI Model/Endpoint Integration

- Endpoint detection needed in STI CMP
 - Reduce polish time/consumption; reduce dishing/erosion
- Objective: to understand and model friction force evolution during CMP, and relate to motor current signal
- Model Assumption: Friction proportional to
 - □ Topography roughness: f_{roughness}
 - □ Coefficient of friction for different %areas exposed during topography evolution: f_µ

f roughness 0.15 Chip Topography 0,1 0.05 6000 04 100 4000 -50 150 Time (s) 2000 f_µ 50 0.9 100 150 50 Time (s)

Approach:

- □ Patterned wafer CMP model calibrated with polished wafer measurements
- □ Wafer surface evolution is predicated with the calibrated CMP model
- Friction is estimated with friction model

Experiments:

- □ Different STI processes/ceria slurries
 - Different oxide/nitride coefficient of friction ratios

Comparison: Measured vs. Simulated Friction

3. Pad Planarization Performance Modeling

Novel Pad with Water Soluble Particles (WSP)

Goal: Understand how pad parameters, such as stiffness, pore size and distribution, relate to pad planarization performance

Observations

- Both pads polish low pattern density areas faster than high pattern density areas
 - Fundamental pattern density dependency
- □ Novel pad exhibits *less* pattern dependency
 - a smaller spread in the times required to planarize 10% and 90% pattern density structures

Collaboration with JSR

Copper Planarization – Pad/Process Studies (Task A9)

Faculty:

□ Prof. Steve Beaudoin, Purdue Chemical Engineering

Students

- □ Bum Soo Kim, Purdue, Chemical Engineering
- □ Caitlin Kilroy, Purdue, Chemical Engineering

Research Objectives:

- Overall: understand/optimize Cu CMP protocols to reduce energy, water and chemical usage
- Recent focus: Methods to decouple/study pad bulk and surface asperity elastic modulus properties
- Current focus: Connect pad/slurry properties to pad/particle/wafer interactions and to planarization performance

Acknowledgments

□ State of Indiana 21st Century Fund; Praxair Microelectronics

Interpretation: Pad Elastic Modulus Studies

Measured Elastic Modulus in Tension

Measured Elastic Modulus in Compression

Interpretation: Pad Behavior

- Asperity layer and bulk pad studied
 - Effects of cyclical loading during CMP, soaking in slurries, and soaking in aqueous solutions studied
 - □ Asperity layer
 - Pad asperities undergo minor changes
 - Conditioning/polishing wear may increase effective modulus slightly
 - Bulk pad
 - Core region of pad becomes softer (lower modulus) with increased exposure to slurry, aqueous solution, or polishing
 - Polishing accelerates reduction in modulus

Implications

- Pad conditioning may influence load/asperity, but may not influence mechanical properties of individual asperities
- Pad break-in periods may reflect combined evolution of pad bulk modulus and pad asperity contact area

Electrochemical Mechanical Planarization (ECMP) of Copper (Task A6)

Faculty:

Prof. Srini Raghavan, U. Arizona, Materials Science & Engineering

Students

- □ Viral Lowalekar, U. Arizona, Materials Science & Engineering
- □ Ashok Muthukumaran, U. Arizona, Materials Science & Engineering

Research Objectives:

- Develop chemical systems suitable for ECMP of copper through electrochemical investigations
 - Identify inhibitors that can function effectively under anodic potential
- □ Reduction in abrasives use/output, reduced cost, and low pressure polish

Key Accomplishments:

- Developed oxalic acid based chemical system containing a redox inhibitor (TSA) that is suitable for copper ECMP
- Characterized the mechanism of inhibition by electrochemical investigations

ECMP for Bulk Copper Removal

- Wafer is anodically biased during polishing in a solution at very low (~0.5 psi) pressure
- Passivating agent/corrosion inhibitor is added to protect low lying areas while higher areas are polished.
- > Inhibitors must be stable at anodic overpotentials
 - Efficiency of the most commonly used inhibitor BTA decreases with applied anodic potential

ECMP of Copper in Oxalic Acid System - Comparison of TSA and BTA as Inhibitor

- ➤ 0.1 M Oxalic + 0.01 M TSA + 1% SiO₂
- Increase in overpotential increases Cu removal rates.
- Unlike BTA, no static removal seen at higher overpotentials.
- 0.1 M Oxalic + 0.001M BTA + 1%SiO₂
 Higher polishing and static removal rates with higher overpotential.

Proposed Inhibition Mechanism for BTA and TSA

With BTA, Small η With BTA, Large η

Future Directions

- Continue work with redox inhibitors and study rate –planarity relationship
- Investigate the feasibility of removal of barrier layers (Ta, TaN, Ru) using ECMP technique.
 - ✤ 1:1 selectivity between Cu and barrier layer

The Means to Select New Materials and Devices Using ATDF at SEMATECH

Jeff Wetzel

jeff.wetzel@atdf.com

Manager, Emerging Technologies Advanced Technology Development Facility

February 24, 2006

Where research meets manufacturing.

Outline

- ATDF Status in SEMATECH and Business
 Model
- Specific Examples
 - FEOL: Fermi-FET™
 - BEOL: Dual Damascene Imprint
- Summary

Corporate Timeline

- 1988SEMATECH founded
- 1996 I300I subsidiary started
- 1997ATDF Test Wafer Services
- 1998 International members join
- BEOL Cu 300 mm capability
 - First custom projects

Customer can define own R&D program and protect developed IP

2004 (July) ATDF as independent for-profit subsidiary

→ ATDF is a SEMATECH-owned company with its own independent Board of Directors

2003

Increase of R&D Cost

Many companies finding the traditional collaboration methods NOT worth the effort

- R&D&E costs increasing at almost 2X the revenue rate
- 300 mm R&D very expensive
- "Need new ways to make R&D more efficient..."

R&D foundry is one solution, where chip makers and suppliers share R&D costs

ATDF's R&D Foundry Vision

→ To become the 1st 300 mm R&D foundry that serves our customers with

- > IP Protection
- Protection of IPs generated
- Full Customization Customer defined projects w/ ATDF and/or other Partners
- > Fast Learning
- Low Cost

- 6 cycles of R&D device learning per year
- -- Low capital costs are passed on to customers. Per Wafer pricing

ATDF's Business

- Wafer Services
 - ATDF shipped 109,750 test wafers to suppliers, 2005
 - > 300 customers world wide, #1 test wafer supplier
 - Analytical Services
- Emerging Technologies
 - Major IDM makers outsource their R&D
 - Start-up companies prototype
- <u>SEMATECH programs</u>/AMRC support/SRC and universities
 - Front End of Line Interconnect Lithography
- Supplier programs
 - Cleanroom space made available for private use/access controlled
 - IP created by customer & protected
 - ATDF infrastructure available
 - <u>TAP Tool Access Program</u>
- 300 mm start-up support

Wafers to start-up equipment, training, best known methods for fab layout modeling support --Ti, AMD, IFX 300 mm start-up support

Feb. 23, 200

www.atdf.com

ATDF Infrastructure

- 62,000 sq ft (5800m2) cleanroom (42,000 sq ft of Class 1)
- ~ 200 process & analytical tools
- Complete 200 mm FEOL Flow
 - 300 mm conversion in 2007

- Complete 300 mm Cu/low-k multilevel interconnect
- Custom process design and flows
- 7 day/24 hour production
- ~ 11,000 wafer starts per month
- Equipment, process, and test devices have been developed or improved in the ATDF

Roadmap

	200mm	200mm	300mm
	l/s	l/s	l/s
	ATDF	ATDF	ATDF
	85nm Gate	45nm Gate	32nm Gate
	CMOS	Current Tools	New Tools
Production Year	end of 2004	Q1 of 2006	2007/2008
Active Pitch (nm)	700/700	250/250	100/150
N+ to P+ Space (nm)	N/A		
Gate Line/Space (nm)	100/900	65/250	45/200
Gate Physical (nm)	85	45	32
Contact size (nm)	350	150	90
Metal 1 Line/Space (nr	350/350	150/150	100/100
Via 1 size (nm)	N/A	250	90
Metal 2 Line/space (nr	N/A	250/250	100/100

Established 200 mm Baselines:

- Planar CMOS 85 nm Lg
- Planar CMOS Biaxially Strained Si 85 nm Lg
- -TriGate and FinFET (MuGFET) CMOS (45/65 Fin/Gate)

300 mm Baseline: 130 nm Cu/Low-K Dual Damascene

Where research meets manufacturing.

Platform

Where research meets manufacturing

FEOL Example – Fermi-FET™

- Thunderbird Technologies, Inc., uses ATDF's 85
 nm CMOS baseline.
 - STI, silicide, contact, M1 modules reused.
 - Gate stack is customized for desired workfunction.
 - Well, halo, channel implants optimized for enhanced performance, reduced leakage current for Lg=85 nm.
 - Thermal budget, implant conditions to be calibrated to provide device models (ongoing).
 - Spacer module optimized in context of implants, thermal budget.
 - "Foundary-friendly" process technology.

Higher Performance Devices Fermi-FET 1

Band diagrams at $V_G = V_{TH}$

Fermi-FET device provides nearly *zero* surface field at threshold.

Where research meets manufacturing

Higher Performance Devices Fermi-FET 2

Measured 180 nm P-channel I_{ON} vs. I_{OFF} Behavior

www.atdf.com

Higher Performance Devices Fermi-FET 3

Measured 180 nm N-Channel CV Behavior

Feb. 23, 2006

15

Feb. 23, 2006

16

of process steps: **19**

Ash & Trench Hard Mask Open Etch Via Hard Mask Etch Via & Trench Stop

of process steps: 23 x 8 184

Copper Seed Copper Plate Trench & Via Etch

Barrier Etch

SFIL Damascene Process

Feb. 23, 2006

of process steps: **7**

20

Copper Flow Integration

- Via opening etches (residual layer and barrier layer)
- Thermal stability (deposition and anneal steps)
- Adhesion & mechanical stability during CMP

M2 level Serpentine

M2 & Via pattern

DuPont Photomasks Template

Where research meets manufacturing.

Feb. 23, 200

Post-CMP Features

Corresponding Template

LBNL Template

ATDF's Contributions to the Functional Resist Project

- Customized Test Vehicle Design
 - 810 GDS dataset created for DD processing in ATDF, based on 0.25 µm test vehicle.
 - Scaled to 0.25; 0.5; 1.0 and 2.0 μm features
 - M1 reticle and template, and M2/V1 template
- Integration and Process Engineering
 - Etch development for Cu open step
 - PVD barrier/seed development, low temp degas
 - RT recrystallation of plated Cu
 - Low down-force CMP of Cu and Ta
- Electrical Testing: in-line and bench test

Final Summary

- ATDF is a flexible R&D device foundary.
 - Operated as a Pilot Line in an IDM
 - Able to evaluate new materials and minimize/avoid risks associated with contamination to allow integration.
- Complete Process, Device and Materials Evaluations
 - Wafer process, in-line metrology, materials/process characterization, electrical testing, reliability testing.
- Ongoing in 2006:
 - Process simulation and calibration
 - Device simulation and calibration
 - Device Models

Appendix

- Process Capabilities
- Analytical Capabilities
- Test Capabilities

Acknowledgements

- Dr. Michael Dennen, Dr. Bill Richards, Dr. Drew Vinal of Thunderbird Technologies, Inc.
- Hideki Takeuchi, Dr. Shuji Ikeda of ATDF
- Dr. Michael Stewart of Molecular Imprints Inc., Dr. Grant Willson of U. of Texas at Austin.

SEMATECH, the SEMATECH logo, AMRC, Advanced Materials Research Center, ATDF, the ATDF logo, Advanced Technology Development Facility, ISMT and International SEMATECH Manufacturing Initiative are service marks of the SEMATECH, Inc. All other service marks are trademarks are the property of their respective owners.

The Dual Damascene/SFIL work is an AMRC project presentation made possible, in part, by funding provided by SEMATECH.

Fermi-FET is a registered trademark of Thunderbird Technologies, Inc.

Process Capabilties (200mm)

Lithography

- 248 patterning (200 mm & 300 mm)
- 193 patterning (200 mm & 300 mm)

Wet Processing/Cleaning

 Immersion (PreGate, Metals); Spray-FSI's (Doped, Undoped); Spray-SEZ (backside, Wedding Cake); Vapor HF (FSI)

Diffusion/Hot Processing

Atmospheric (Anneals, Oxidation(wet/dry), LowK Cure)
Reduced Pressure (TEOS, LowK Cure)

Plasma Etch/Ash

- Poly (LAM, Applied Materials); Si (LAM, Applied Materials); Oxide (TEL, Applied Materials); Metal (LAM, Applied Materials)
- •Ash (ULVAC, Axcelis) special processes for metals

• Implant

- •High Current (AMAT-Leap); Medium Current (ULVAC, Bridge tool, Quad)
- •Dose 1E11-1e16/ 200eV-80KeV; 1E11-1E14/3KeV-900KeV, max 60° tilt

• Metals

- PVD* (Cu, Ta, TaN, Ti, TiN, AI, Mo, Co, Ni); ALD*; CVD W, TiN(Si); ECD Cu
- PECVD (SiN, TEOS, SiON, PSG, SiC, SiCN, SiCO)
- Anneal Mattson Spike, Mattson Flash(private), AG8800 (lamp)
- **CMP** Cu, Oxide (Applied Materials Mirra)

In-Line Metrology Capabilities

- Litho Overlay, CD
 - Applied Materials CD SEM (expect a 2nd Applied Materials CD SEM)
- Films thickness, RI, stress, multilayers, pattern recognition for features, composition
 - Spectroscopic ellipsometry
 - FTIR
 - Wafer curvature, wafer bow
 - AFM/Profilometer
 - X-ray reflectivity (specular and diffuse)
 - SAW
- Particles, defect review station
- SPC tools are routinely qualified for particles and process and film parameters.
 - Eg, dep rate, etch rate and uniformity. Film thickness and uniformity.

Analytical Services

Capabilities

- Atomic Force Microscopy (AFM)
- FE Auger

FE Scanning Electron Microscope (FE SEM)

- SEM EDS Analysis and OIM
- Secondary Ion Mass Spectroscopy (SIMS)
- Transmission Electron Microscopy (TEM/STEM)
- TEM/STEM EDS, EELS and Electron Diffraction
- Total X-Ray Fluorescence (TXRF)
- X-Ray Florescence (XRF)
- X-Ray Reflectometry (XRR)
- X-Ray Photoelectron Spectroscopy (XPS)
- VPD ICP-MS
- BEAT (Beveled Edge Analytical Technique)
- Atomic Absorption (AA)
- Hg-Probe CV Analysis

Feb. 23, 200

Electrical Test Capabilities

Equipment:

- •High volume automated in-line parametrics 200 mm & 300 mm
- •High volume automated IV & CV arrays with up to 60,000 lines of data
- •IC-V software allows for fast custom test generation & auto testing
- •8753C Network Analyzer
- •Data analysis tools
- Raw Data Extraction
- •Hot chuck temperatures up to 300C
- •Cold chuck temperatures down to L-He
- Engineering Stations

Algorithms:

- •Wafer Level Reliability- HCI, NBTI, BTS, TDDB, GOI, RVB, EM
- •Charge trapping, charge pumping /quasi-static Dit characterizations
- •ID family of curves- IV, IDVD, IDVG, IGVG, Ion, Ioff, Isat, body bias
- •Capacitance multiple frequency 20Hz-110MHz

Materials Integration Challenges for Next-Generation Interconnects

Michael D. Goodner Mansour Moinpour

Intel Corporation

2006 Review: NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing

February 23, 2006 – Tucson, Arizona

Agenda

- Motivation for low k materials
- Integration challenges with current materials
 - Pore sealing
 - Etch stop
- Next-generation interconnect options
- Focus areas for future development

Summary

Contributors:

Boyan Boyanov, Grant Kloster, Bruce Block

Interconnect Scaling & Future Options

1000 nm Two Al Metal layers, BPSG

500 nm ILD planarization, W plugs w etch back

350 nm Four Al metal layers, W polish,

PSG?

250 nm

Five AI metal layers, SiOF

180 nm

3D

Options

2006 ERC Review – February 23, 2006

Optical

- Interconnect RC delay is now equal to or greater than front end delay effects
 - Cu provides lower R than AI, but cannot be reduced each generation
 - Power, cross-talk and delay must be minimized by reducing ILD capacitance (k)
- Main approaches to achieve lower K are carbon doping and/or to introduce porosity

Requires significant integration and provides limited extendibility

2006 ERC Review – February 23, 2006

Challenges – Porous ILD

Poor barrier / seed coverage due to exposed pores

Precursor penetration: Toluene penetration is one method to determine porosity

(intel)

Source: IMEC

- Robust k < 2.4 film will likely be porous
- Metallization of porous ILD presents several challenges
 - Pores cause defects in barrier coverage → reliability failures
 - Increasing porosity (> 20-30%)
 leads to interconnected pores →
 ALD / CVD precursor penetration

Need solutions to minimize and/or eliminate Low K / Barrier interaction

Dual Damascene Pore Sealing

- Two primary routes for sealing porous dielectrics:
 - Plasma / beam treatments
 - Deposition of separate sealing layer
- Both have shortcomings:
 - Difficult to control sealing thickness of plasma & beam treatments, chemistry can be similar to damage layer
 - Non-selective deposition can leave trench bottoms exposed, unless trench ES is used
- For k_{ILD} = 2.4, 10nm trench ES increases k:
 - 2% for k = 3.0 ES
 - 8% for k = 5.5 ES

Need low-k pore sealing material selective to Cu / metal cap

Ueki, et al., 2004 Symposium on VLSI Technologies

Selective Pore Sealing

- Process and materials solutions being explored
- Process:
 - Etch byproduct redeposition
 - Concerns about surface roughness, adhesion and pinhole defects
- Materials:
 - ALD Silica
 - Conformal SiO₂ coatings with Al seed
 - Need to tailor penetration and metal selectivity
 - Larger k_{eff} impact than low k sealants
 - Parylene deposition
 - Selective to transition metals
 - Must limit penetration to minimize k impact

alumina silica

Furuya, et al., 2004 IITC

de Rouffignac, *et al.*, Electrochem Solid-State Lett, (2004) v 7, pp G306-G308

Jezewski, J Electrochem Soc, (2004) v 151, pp F157-F161

Low K Etch Stop

- Limited but important options for low-k etch stop development
 - Thin etch stop
 - Reduction from 25nm to 10nm gives 6.8% reduction in k_{eff}
 - However, higher selectivity to low-k ILD is needed
 - Low K etch stop
 - Reduction from k ~ 5.5 to k ~ 3.0 gives 12.3% reduction in k_{eff}
 - Must have chemical diversity to maintain etch selectivity between ILD and ES
- Reducing k_{ES} provides biggest impact
 - Requires greatest material development

For k_{ILD} = 2.4 model system:

k _{ES}	thk _{ES}	k _{eff}	$\Delta \mathbf{k}_{eff}$
	(nm)		(%)
5.5	25	2.84	
5.5	10	2.65	6.8
3.0	25	2.49	12.3
3.0	10	2.45	13.6

Low K hermetic ES development needed to realize largest potential gain with smallest process impact

Air-Gap: The lowest possible k

- Air-gap incorporates the limiting case k_{ILD} → 1
- Two approaches to air-gap interconnects:
 - Process: Form air-gap through deposition properties
 - Materials: Remove sacrificial material downstream
- Both have significant challenges:
 - Structural integrity of final structure is questionable
 - Additional process steps add significant cost!
 - Multi-layer processing presents additional challenges...

Noguchi, *et al.*, IEEE Transactions on Electron Devices (2005), v 52, n 3, pp 352-359

Bhusari, *et al.*, J. Microelectromechanical Systems, (2001), v 10, n 3, pp 400-408

Multi-Level Air-Gap Challenges

- Common issues
 - Metal Barrier: Thick enough to prevent EM, but low R impact
 - Unlanded vias: If allowed, need film to land on

• For process-generated air-gap:

- Keyhole needs to be optimized to ensure zero fill while maintaining ES integrity
- Residue must be inert and immobile
- Line spacing is restricted on all layers

• For sacrificial material air-gap:

- Robust removal technique needed
- Remove at each layer vs. EOL?

Need process *and* material innovations to enable air-gap

(intel)

Novel Materials

Source: Data from IMEC evaluations, used with permission

- Areas outlined so far do not address ultimate requirement: thermomechanical reliability
- Many CVD and SOD materials lie along (or below) same performance curve
 - Similar trends exist for hardness, cohesive strength
- Cure optimization is not sufficient to move into desired performance space

Need fundamental materials changes to enter new performance space

Novel Materials Development

- Several routes toward new E vs. k performance already being examined
- Templated materials
 - Ordered structure provides increased strength at low porosity
 - Feasibility has been demonstrated for zeolites as well as ordered sol-gel materials
 - Up to 5x increase in E for equivalent k
 - Pore sealing very important for zeolites due to high pore connectivity
 - All processes are spin-on, some based on supercritical CO₂
- Non-SiCOH materials
 - Various BN and BCN materials have been researched
 - Adhesion concerns must be addressed, etch and cleans impact understood
 - Potential route to new performance space for dense and microporous films

Pai, et al., Science, 2004, 303, 507-510

Material	k _{calc}
Polyphenylene	3.0
Polyborazylene	1.9
Polyborazinylamine	2.0

Data and figure from Kumada, *et al.*, 2004 ISMT Low K Symposium

Templated Materials

- Templating allows materials with ordered porosity
 - Can achieve high porosity while maintaining mechanical strength
- Zeolites: class of naturally-occurring ordered porosity materials
 - Synthetic pure SiO₂ zeolite (silicalite) shows ~5x increase in modulus for equivalent k value (Wang, et al., Adv. Mater. 2001)
 - Adding other metals (AI, Ti, Ge, Mn...) can increase strength further
- Currently, only available through spin-on sol-gel processing

• Needs should drive choice with large impact and appropriate timing.

One Option: On Chip Optical Interconnects

Optical Building Blocks

CMOS Building Block Materials

	Waveguide or Cladding	Photo-detector	Modulator
SiO ₂	\checkmark		
Si ₃ N ₄	\checkmark		
Polyimide	\checkmark		
SiCOH	\checkmark		
Si	\checkmark	\checkmark	\checkmark
Ge		\checkmark	\checkmark

New modulator materials are required

2006 ERC Review – February 23, 2006

íntel

Candidate Modulator Materials

Material	Effect	Device Performance	Issues
Si	Free carrier	2.5 Gb/s – MZI (~1 cm)	•Speed
			 Optical loss
EO Polymer	Linear EO	100 Gb/s – MZI (>1cm)	•Small effect
		4 Gb/s – ring resonator (100 um)	 Thermal Stability
			•Poling
Ferroelectric	•Linear EO	40 Gb/s -LiNbO ₃ MZI	 Deposition
Oxide	 Quadratic 		Temperature
	EO		 Complex Materials
			•High Dielectric
			Constant

- On chip modulators are very immature
- Lots of materials issues with EO materials
- Key for OI technology

2006 ERC Review – February 23, 2006

Focus Areas for Development

- Near-term (2-3 generations)
 - ILD repair / carbon restoration
 - Alternative cure characterization
 - Dual-damascene compatible pore sealing
- Longer term
 - Alternative materials (beyond SiCOH)
 - Templated / ordered materials
 - Alternative interconnect schemes
 - 3D, optical, nanotubes...

Summary

- Selective pore sealing or alternative process schemes needed to integrate porous materials
- Development of hermetic low k etch stop provides large gain for single-generation improvement
- New materials needed to make revolutionary move out of current performance space
- New interconnect options will generate new materials selection and integration challenges

Appendix – Model System

- Raphael[™] simulations were used to calculate impact of different architecture / material combinations
- Basic system is three metal lines in low-k ILD; entire structure is on low-k base and capped with low-k
- Dimensions loosely based on 2004 ITRS
- Damage / pore sealing layer and trench ES added to some scenarios, ES thickness varied

- Dimensions:
 - ILD thickness: 135 nm
 - ES thickness: 25 nm
 - Metal pitch: 100 nm
 - Metal depth: 90 nm
 - Metal Top CD: 50 nm
 - MT Bottom CD: 47 nm
- Materials:

- k_{ES} = 5.5
- k_{ox} = 4.0 (for damage / pore seal)
- k_{eff} for model system ⇒ 2.84

For further information on Intel's silicon technology and Moore's Law, please visit the Silicon Showcase at <u>www.intel.com/research/silicon</u>

Key Development Challenges for Planarization and Interconnects at the 32nm Node and Beyond

Mansour Moinpour, Michael D. Goodner

10th Annual Review of NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Feb. 23-24 2006, Tucson AZ

Contributors: J. Blackwell, B. Boyanov, G. Ding, V. Dubin, P. Fischer, F. Gstrein, S. Johnston, G. Kloster, S. List, M. Garner

Silicon Scaling Introduces Numerous Material Challenges

- Lithography
- Transistors (not discussed here)
- Interconnects
 - CMP
 - Low K
 - Metallization
- What's beyond Cu/Low K?

Evolution of CMP

Logic Techno	logy	Application gy		oment	Post-CMP Cleaning Processes	
First Generati (0.8-0.5	ion um)	• Oxide (ILD) h h)		e platen, e head, One step polishing	Wet station cleaning, DI wafer scrub	
Second Generati 0.5 um)	ion (<	• Oxide +ILD0 • W CMP + STI	Multip polisi	ole platens & heads, Two-step hing, End-point, On-board metrology	DI wafer scrub, NH₄OH clean	
Third Generati 0.25 um)	ion (<)	 Oxide +ILD0 W CMP + STI Cu, doped ILD 	Multip point in/dry	ole platens & heads, Multi-step, End- , On-board metrology, Integrated dry- -out, non-rotary (orbital, linear CMP)	DI wafer scrub, NH₄OH clean, HF-clean, Integrated dry-in/dry-out, r chemistries	¥W
Fourth Generati 0.15um)	ion (<	 Oxide +ILD0 W CMP + STI Cu, doped ILD Low-k, ULK, various barrier films 	Multip point in/dry	ole platens & heads, Multi-step, End- , On-board metrology, Integrated dry- -out, non-rotary (orbital, linear CMP)	DI wafer scrub, NH₄OH clean, HF-clean, Integrated dry-in/dry-out, r chemistries (surfactants, chelating/complexing age	₩ .s)
	Increased Complexity In Materials & Surfaces				Increased Complexity In Post CMP Clean	У
intel	Moi pour, A. Tregub, A, Oehler, and K. Cadien, "Advances in CMP Consumables", MRS Bulletin, October (2000)					

Continuous Improvement Areas

- Cost improvements
 - Raw consumable costs
 - More efficient pads, slurry, equipment
- Defect reduction
 - Improved quality control
 - Process control
 - Predictive monitors for pad slurry quality
 - More accurate particle metrology
- Improved topography control
 - WID WIW

CMP Technology Trends

- Topography requirement trends with Moore's Law: 30% reduction every two years (Next Page)— CMP pace is critical in maintaining Moore's law.
- Materials that are subject to polish are diverging due to diverging application needs.
- Each application could deal with heterogeneous materials, leading to complex solutions.
- Key words for future CMP applications are versatility and tunability
- Nano particle engineering and characterization, complex chemistry and new metrology for new applications

Pattern Dependent Concerns

Independent of Cu/low-κ, Conventional CMP Metrics

- New Challenges
 - > Mechanical Integrity Issues
 - Corrosion & Defectivity Concerns

J. Lee & M. Moinpour, 2004 Spring MRS

Post CMP Topography: Critical Applications

(intel)

Particle Sizing Techniques versus Lowest (best) resolutions

CMP: Fundamental Understanding

- Fundamental understanding of CMP is still weak. Especially in areas of quantitative modeling with "C' contributions in CMP: chemical reactions, kinetics, and chemistry-related defects
- Need modeling that has predictive values to facilitate our understanding of new materials, consumables.
- Knowledge is primarily phenomenological and intuitionbased, need to have a more systematic approach. A continued chance for academia to shine.

CMP Fundamental Understanding: Suitable domain for Universities & National Labs

Motivation for Low-K

- Interconnect RC delay is now equal to or greater than front end delay effects
 - Cu provides lower R than AI, but cannot be reduced each generation
 - Power, cross-talk and delay must be minimized by reducing ILD capacitance (k)
- Main Approach to achieve lower K is Carbon Doping and/or to introduce porosity
 J. Lee & M. Moinpour, 2004 Spring MRS

Scaling impacts on backend CMP

Conventional Cu constraints

Lower and ultra-low k bring additional excitement

- -ILD loss control
- -Defect concerns
- -Mechanical integrity
 - Electro assisted CMP
 - Low P
 - Electropolish

NSF/SRC ERC Review Fe

Challenges – Etch & Cleans

• Dry etch \rightarrow ILD damage \rightarrow increase k

- C depletion
- Oxidation (introduction of –OH groups)
- Film densification
- Wet etch → impact on k and film stability
 - Moisture uptake (significant k increase)

Need solutions to address both surface and bulk ILD damage

Dalton, et al., 2004 IITC

Novel Materials

Source: Data from IMEC evaluations, used with permission

- Areas outlined so far do not address ultimate requirement: thermomechanical reliability
- Many CVD and SOD materials lie along (or below) same performance curve
 - Similar trends exist for hardness, cohesive strength
- Cure optimization is not sufficient to move into desired performance space

Need fundamental materials changes to enter new performance space

Metrology Development

Murray, *et al.*, Microelectronic Eng, 2002, 60, 133-141

lacopi, et al., Electrochem Solid State Lett, 2004, 7, G79-G82

Current methods for measuring mechanical properties

- Require unrealistic film thickness
- Give divergent results
- Dielectric damage and pore sealing require new techniques
 - HF decoration is qualitative only
 - EELS and e-test are time-consuming
 - E-test requires full patterning and passivation
- Fab-based real-time characterization techniques will provide significant benefits

New fab-based metrologies are needed for film screening and process control

• Needs should drive choice with large impact and appropriate timing.

Introduction – CNT Interconnects

- interconnects are key determinants of chip performance
- resistivity of Cu interconnects increases as dimensions decrease and hence poses a scaling and latency challenge
- SWNT exhibit ballistic electron transport with elastic scattering length up to 2 µm
- resistance of an ideal quantum wire is a multiple of e²/h; the conductance of SWNT is 4e²/h; this corresponds to a resistance of 6.8 k Ω

n ... number of SWNTs in the bundle

- SWNT, current density without failure: 10⁹ A/cm² (Cu 10⁶ A/cm²)
- SWNT: good mechanical stability (strength and toughness); enables new interlayer
 dielectric solutions
 Courtesy of F. Gstrein & V. Dubin, Intel

NSF/SRC ERC Review Feb. 06 – Moinpour, et al.

Summary

- Silicon Nanotechnology is production reality and follows Moore's law
- New materials are needed for future technologies
 - Not much done/reported in CMP of new materials
- New Metrology needed for 32nm and beyond
- Pore Sealing, damage repair and controlling line resistance are among key challenges in conventional Cu/Low Integration schemes.
- Various options are being explored beyond Cu/Low K

Nano-material Innovation is Needed.....

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture.

Real-time measurements of pad deformation under the wafer during polish

Chris Rogers

Jon, Chris, Joe, Dewi, Jesse, Alicia, Ed, Scott, Cappy, Dan, Jim, Nicole

and

Vincent Manno, Ara Philipossian, Mansour Moinpour, Chris Barnes,Sam Anjur, Frank Kaufman

What are we looking at?

What have we seen?

DELIF 2

Vertical Cursor Profile

Division of 2 images cancels variations in image source intensity

Issues

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

- Systematic Errors
 - I. Dyes have similar emission spectrum
 - II. Dye 1 absorbs emission from Dye 2
 - III. Emission is a function of the scalar
- Photo-bleaching
- Photo-degradation on the pads

Under the Wafer: Conditioner

Under the Wafer: Air Pockets

Air pockets get trapped in features Grooves help to transport air pockets under the wafer features

Roughness

Roughness variation

- asperity size distribution = fluid layer thickness distribution
- Standard deviation comparison
 → pad compression
- Peak location \rightarrow fluid layer thickness.
- Compression factor: e

Pad Compression

Sample Variations

Feature Effects

Conclusions

- Can measure real-time, in-situ pad deformation
- Can we understand asperity behavior?
- Can we relate to polish?
- What is contact?
- Can we correlate friction (macro) with images (micro)?

CMP: A Technical and Commercial Perspective

Cliff Spiro VP Research and Development Cabot Microelectronics February 23, 2006

CMP Industry Demographics: Transition/Change

Growth Drivers

- •More Wafer Starts
- •More Layers
- •More sub 250 nm Chips
- •Strong Memory, Foundry Growth
- •New Materials–Ru, GST, UlowK
- •Complex Integration and Patterns
- •45,33,22 nm

Growth Detractors

- •More Global Competition
- •Greater Customer Leverage
- •Acute Customer Focus on Consumable
 - Costs
- •Greater Polishing Efficiency/300mm
- •Disruptive Technology

Proceedings

2

Cabot Microelectronics Approach

- •Continue to Drive CMP Slurry Performance For All Materials and Nodes
- •Invest Heavily in R&D \$45 million/yr
- •Develop Platforms With Built-In Tunability For Customization
- •Globalize R&D to Get Closer to Our Customers
- •Establish Joint Developments With Key Customers and Suppliers
- •Expand Basic Research In House and at Universities
- •Greater Emphasis on Cost and Quality and Supply Assurance
- •Six Sigma and Design for Six Sigma
- •Move Aggressively Into Technology Adjacencies
 - Pads
 - Engineering Surface Finish: CMP For Non- Microelectronics

CMC Product Roadmap

© 2004 Cabot Microelectronics Corporation

Nano-Ceria For Ultra-Low Defectivity

To Lower Defect Count Rounded Edge and Corner Narrow Particle Size Distribution

5

Selective Poly Slurry

6

Significant Improvement in Tungsten Erosion

7

W7300: Tungsten / Oxide Tunability

Cabot Microelectronics New Pad- D100

© 2004 Cabot Microelectronics Corporation

Six Sigma For Variation Reduction

Six Sigma and Wafer Cost Reduction: Table Top Plus DOE Yield Savings and Efficiencies

11

ESF Optics – Aluminum Mirrors

- ESF Added Value
 - Enable use of pure Al mirror (eliminate Ni plating)
 - Low weight
 - Thermal stability
 - Reduced cost
 - Consistent quality
 - CMC polishing reduces roughness from 30-80 Å down to < 10 Å
- Applications
 - X-ray telescopes
 - Cryogenic instruments
 - Interferometry
 - Medical imaging devices
- 3-Dimensional Polishing Capability

12

Summary and Conclusions

Intensity of Technology Investment Increasing
New Demands For Performance, Selectivity, Tunability
Divergence of Integration, Patterns, Microstructures and Materials
Greater Emphasis on Cost and Quality and Supply Assurance

•Adjacencies For Growth

CMP For Microelectronics: "A Lot of Hunt Left in This Dog"

Thrust B: Front End Processes

Project 1: Surface Preparation

Anthony Muscat*, Chemical & Environmental Engineering, Arizona Yoshio Nishi, Electrical Engineering, Stanford

Project 2: Deposition

Paul McIntyre, Materials Science and Engineering, Stanford Stacey Bent, Chemical Engineering, Stanford Charles Musgrave, Chemical Engineering, Stanford Krishna Saraswat*, Electrical Engineering, Stanford

Project 3: Etching and Device Structures

David Graves, Chemical Engineering, U.C. Berkeley

Annual Review, February 23-24, 2006

* Thrust Co-Leaders

Thrust B within ERC Research Framework

Moore's Law Relies on New Materials

Thrust B Objectives

□ Etching of High κ and Metal Gate Films Graves (Berkeley) Saraswat (Stanford)

- Precursor selection
- > Effluent generation
- > Profile simulations

ALD of High κ Films McIntyre (Stanford)

- Precursor selection
- Effluent generation
- Reaction chemistry modeling

□ Gas Phase Surface Preparation Muscat (Arizona) > Integrated HF/vapor + UV-Cl₂

Device Modeling

Saraswat (Stanford)

Identify promising gate stack structures and materials

□ Selective Surface Priming

Bent (Stanford)

Deactivate SiO₂ by organic

Muscat (Arizona)

Activate Si by monolayer halogen

□Surface preparation of new materials

Nishi (Stanford)

- Ge cleaning process development
- > Surface characterization

Muscat (Arizona)

≻ SiGe

Selected Accomplishments 1997-2005

- 5x reduction of UPW for some rinsing applications was demonstrated, including 50% reduction in cycle time (1997)
- Showed methoxy termination created oxide with superior interface properties (aq 2000, gas 2005)
- Developed Cost of Ownership model for implementing new surface passivation in fab (2001)
- Demonstrated promising electrical behavior of UV-ozone grown ZrO₂ films using patterned Pt MOSCAP structures (2001)
- Determined that anisotropic structure and plasma etching best trade-off between process issues, environmental issues, and device performance for three transistor structures (2002)
- Measured etch products in RuO₂ etching in O₂ plasma and applied wall deposition model (2003)
Selected Accomplishments 1997-2005, cont'd

- Developed first ICP abatement device for destroying PFCs downstream of a plasma etcher with destruction efficiencies >94%, results commercialized by Litmus (2004)
- Demonstrated chemical mechanisms and energetics of ALD blocking and selectivity as a function of organic SAM functionalization using quantum chemical simulations (2004)
- Utilized DI-O3 process on Ge to improve surface roughness to 0.12nm RMS (2005)
- Demonstrated selective deposition of single SiN layer on Si using UV-light (2005)
- Achieved a new chemically selective process to achieve highresolution area selective atomic layer deposition of hafnium dioxide (2005)

Graduated Students

```
Tracey Burr (SPAWAR Systems)
Casey Finstad (Texas Instruments)
Hyoungsub Kim (SKK University, Korea)
Marci Liao (PDF Solutions)
Huihong Luo (Oracle)
Renee Mo (IBM)
Collin Mui (Novellus)
Charles Perkins (Intel)
Chris Wade (Agilent)
```

Thrust B Session

Introduction (5 min) Anthony Muscat, UA

Task B-1-1 (9 min) Adam Thorsness, UA Surface Chemistry of High-k Barrier Layer Formation

Task B-1-2 (9 min) Jungyup Kim, Stanford Surface Roughness and Passivation Studies of Ge surfaces

Task B-2 (8 min) Rong Chen, Stanford Selective Surface Preparation and Templated Atomic Layer Film Deposition

> Task B-2 (8 min) Raghav Sreenivasan, Stanford Gate Stack Engineering by Atomic Layer Deposition

Task B-2 (8 min) Kang-Ill Seo, Stanford Improvement of NBTI of High-k by Incorporation of Fluorine

Task B-3-1 (9 min) Jerry Hsu, UC Berkeley Evaluating EHS Impacts of New Dielectric and Conductor Materials Etch Processes

Q&A (4 min)

Thrust B1:

Surface Chemistry of High-k Barrier Layer Formation

Adam Thorsness, Shariq Siddiqui, and Anthony Muscat

Department of Chemical and Environmental Engineering University of Arizona, Tucson, AZ 85721 agt@u.arizona.edu

NSF/SRC ERC EBSM Annual Review Feb. 2006

- Motivation and ESH Impact
- Research Cluster Apparatus and Process Flow
- UV-Cl₂ process to create a Cl-terminated Si(100) surface from SiH and SiH₂ terminated surfaces.
- Water reactivity with activated CI-terminated Si(100) surface
- Detailed surface analysis of the silicon oxides resulting from H₂O(g) + SiCl(a) reaction.

Gate-Last MOSFET Process with Additive Patterning

Clean, grow field oxide, pattern device area (Mask 1), ion implant (M2), deposit spacer oxide, pattern gate area (M3)

Selectively deposit barrier layer, high-k seed layer, and high-k dielectric layer

Deposit gate metal, pattern (M4), deposit metal isolation dielectric, pattern (M5), deposit metal 1 layer, pattern (M6)

- Gas phase processing requires less chemical usage than liquid processes by several orders of magnitude.
- Integrate process into a single vacuum cluster tool.
- Low temperature method of forming a single silicon oxide layer means lower energy usage.

Research Cluster Apparatus

Example of Controlled Starting Surface for ALD

- Focus of this presentation
 - UV/Cl₂ to create a CI-terminated Si surface
 - H₂O exposure to create SiOH groups or a silicon oxide surface
- Advantages
 - Low temperature process
 - Self-limiting/Controllable formation a uniform oxide and OH-termination

A UV/Cl₂ Process Replaced All Surface H With Cl Atoms

- H₂ desorbs from SiH and SiH₂ surface species after a dilute HF clean from an Si(100) surface
- H₂ desorbed from Si(100) surface exposed to Dark/Cl₂ process
 - T = 300 K, 10% Cl₂ at 100 Torr, 5 min
- No H₂ desorbed after UV/Cl₂ process indicating that all H atoms were replaced by Cl atoms.
 - *T* = 300 K, 10% Cl₂ at 10 Torr, 40 sec

Selectivity: More O on a Cl/Si(100) Activated Surface

- H₂O exposure of non-activated surface results in only 0.2 ML O added.
- Cl activates surface for reaction with H₂O gas.
 - 0.83 ML 1.2 ML added
- No increase in O after Cl is removed.

Addition of O and Removal of Cl

- 1.5 O added to 1 CI removed
- Stable in atmosphere
 - Only a 0.2 ML increase in O after 14 hours.

Oxygen in Si Backbonds and Different Suboxides Created

¹⁰

Interface Oxide Allows For Up to 34 Å of High-k

Summary/Conclusions

- Activated surface with halogen for low T interface growth
 - Obtained CI-terminated Si surface from a UV-Cl₂ process
 - CI interacted with all Si-H and SiH_2 on the Si(100) surface.
 - Only monochloride formed on the Si(100) surface during UV-Cl₂ process.
 - No H remaining on surface.
- Deposited single layer of silicon oxide
 - O atoms detected on the surface after water exposure stable up to 800 K. (no decrease in O coverage)
 - Ratio of 1.5 O atoms were added for every 1 Cl removed.
 - O in the Si backbonds
 - SiO_x where x = 1 4 exist after water exposure.

Future Plans

- Investigate parameters for manipulating Si⁺¹ and SiO₂ (Si⁺⁴) formation.
 - More ideal CI-terminated surface combined with low H₂O partial pressures.
- Deposit high-k on thin oxide and perform electrical (CV) measurements on MIS capacitors.
- Activate high mobility substrates

Acknowledgments

Subtask B-1-2

Surface Roughness and Passivation Studies of Germanium Surface

Jungyup Kim Jim McVittie Toshiyuki Homma Krishna Saraswat Yoshio Nishi

STANFORD UNIVERSITY

Background

 Ge is gaining interest as a substrate for high mobility applications because of higher carrier mobility. (2X electron & 4X hole mobility of Si)

(cm ² V ⁻¹ s ⁻¹)	Si	Ge
Electron	1450	3900
Hole	505	1800

Schäffler et al, Semiconductor Sci. Tech. (1997)

- Therefore development of Ge surface preparation technique is required with particular characteristics ;
 - 1. Efficient Removal of Metal Contamination
 - 2. Minimal Consumption of the Substrate
 - 3. Minimal Surface Roughness
 - 4. Good Passivation Characteristics

1. Efficient Removal of Metal Contamination

► Higher standard oxidation potential difference gives higher metal recovery rate → H₂O₂ and O₃ have the highest oxidation potential and need to be evaluated for cleaning properties.

	Redox Reaction	Standard Oxidation Potential
К	K = K ⁺ + e ⁻	2.931
Са	Ca = Ca ²⁺ + 2e ⁻	2.868
Na	Na = Na ⁺ + e ⁻	2.710
Mg	Mg = Mg ²⁺ + 2e ⁻	2.372
AI	AI = AI ³⁺ + 3e ⁻	1.662
Si	$Si + 2H_2O = SiO_2 + 4H^+ + 4e^-$	0.857
Zn	Zn = Zn ²⁺ + 2e ⁻	0.762
Cr	Cr = Cr ³⁺ + 3e ⁻	0.744
Ni	Ni = Ni ²⁺ + 2e ⁻	0.257
Fe	Fe = Fe ³⁺ + 3e ⁻	0.037
Ge	$Ge + 2H_2O = GeO_2 + 4H^+ + 4e^-$	0.019
NO ₃ -	$NO + 2H_2O = NO_3^- + 4H^+ + 3e^-$	-0.96
Cu	Cu = Cu ²⁺ + 2e ⁻	-0.342
Au	Au = Au ³⁺ + 3e ⁻	-1.498
H ₂ O ₂	$2H_2O = H_2O_2 + 2H^+ + 2e^-$	-1.776
O ₃	$O_2 + 2H_2O = O_3 + 2H^+ + 2e^-$	-2.076

2. Minimal Consumption of Ge Substrate – Etch Rate Study

H₂O₂ based aqueous solutions have high etch rates on Ge.
 O₃ has ~1/10 etch rate of H₂O₂.

3. Surface Roughness

3. Surface Roughness – Correlation with Etch Amount

- Surface roughness does not increase in non-etching solutions (NH₄F, HF, NH₄OH and DI water). Surface roughness can be minimized by minimizing the etch amount.
- Surface roughness is direction dependent. Ge(111) has lower surface roughness than Ge(100)

4. Surface Passivation - Ge Native Oxide Removal

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Ambient Stability of HF & HCI Passivated Ge(100) Surface

HCI treated surface re-oxidizes in 10 mins. (desorption of chlorine)

Ambient Stability of HBr & HI Passivated Ge(100) Surface

HI treated surface stays passivated for 12 hours.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Thermal Stability of HBr & HI Passivated Ge Surface

HBr passivated surface is stable up to 250°C.
 HI passivated surface is stable up to 300°C

Conclusions

- 1. Redox potential table is a useful tool in choosing a material for metal removal.
- 2. High etch rates in oxidizing aqueous cleaning solutions (700 nm/min in 1:1:5 SC-1 @room temp) makes it difficult to apply Si cleaning solutions.
- 3. Ge has concentration dependent high etch rates in H_2O_2 solutions.
- 4. Surface roughness increases with etching amount and does not change in non-etching solutions. Surface roughness is less for (111) crystallographic direction.
- 5. Aqueous HBr & HI solutions passivates the Ge surface for >6 hours.
- 6. HBr and HI passivated surface is stable at 250°C and 300°C respectively.

Future Work

1. Characterization of Br and I passivation on Ge. (CV, ESR)

Thrust B: Front End Processing

Task B2: Selective Surface Preparation and Templated Atomic Layer Film Deposition

Rong Chen, Junsic Hong, David W. Porter, Stacey F. Bent Department of Chemistry; Department of Chemical Engineering

Hyoungsub Kim, Raghavasimhan Sreenivasan, Paul C. McIntyre Department of Materials Science and Engineering

> Hemanth Jagannathan, Yoshio Nishi Department of Electrical Engineering

> > **Stanford University**

NSF/SRC EBSM ERC Review 2006-02-23

1

Area Selective ALD of Gate Stack

Self-aligned deposition process for gate dielectrics and gate metal Goal: *Avoid tuning etching for different high- κ gate dielectrics and gate metals

Conventional CMOS Process

Atomic Layer Deposition

- Layer saturation reactions form conformal film and excellent step-coverage.
- ALD process is based upon chemical reactions between the precursors and the film surface.
- Surface saturation controls deposition.
- Reactions depend on the specific reactive functional groups present at the surface.

Manipulate surface groups before deposition to control the ALD process.

Experimental Setup

HfO₂ ALD Precursors:

- Hafnium chloride (HfCl₄) or hafnium alkylamido Hf(NMe₂)₄)
- Water

process temperature: 300°C for HfCl₄ and 250°C Hf(NMe₂)₄

Pt ALD Precursors:

- (Methylcyclopentadienyl)trimethyl platinum (MeCpPtMe₃)
- Oxygen process temperature: 325°C

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Top View of ALD Reactor

Deactivating Agents on Oxide Surface

• It is also effective for other high-k dielectrics (eg. ZrO₂) and metals (eg. Pt) ALD 6

SAMs Formatiom through Vapor Phase Delivery

Goals:

- Avoid solvent usage Environmental friendly
- Compatible to ALD process Easy scale up to wafers used in IC industry (CVD, vacuum systems)

Long reaction time are necessary for SAMs crystallization and complete deactivation

7

Correlation between Deactivation & Hydrophobicity

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Deactivation of Ge and Si Semiconductors

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Positive and Negative Pattern Transfers

Negative Patterning

Positive Patterning

Area-Selective ALD of HfO₂ by Negative Patterning

Area #1, Octadecyltrichlorosilane deactivated oxide surface; Area #2, non-deactivated Si-H surface SEM Image Hf Auger Mapping

Area-Selective ALD of Pt by Positive Patterning

Area #1, non-deactivated oxide surface; Area #2, 1-octadecene deactivated hydride surface SEM Image Pt Auger Mapping

Selective Deactivation on Patterned SiO₂/Si

SEM image of representative structure

HfO₂ elemental mapping—negative

Pt elemental mapping—positive

Summary

- Deactivation study on SiO₂ by siloxane-based SAMs
- Deactivation study on Ge-H and Si-H by 1alkenes/1-alkynes and alkanethiols
- Vapor phase SAMs formation and deactivation mechanism study
- Pattern transfer investigation by selective attachment and soft lithography
- Area selective ALD on other dielectrics/semiconductor, e.g. medium-k Si₃N₄/Si and high-k HfO₂/Si
- Electrical characterization on Capacitors fabricated by area-selective ALD

14

Acknowledgements

People:

Bent group members Prof. Michael A. Kelly Dr. Peter B. Griffin Prof. Krishna Saraswat Prof. Chris E. D. Chidsey Prof. Charles B. Musgrave

Funding:

- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- Initiative for Nanoscale Materials and Processes (INMP)
- Stanford Center for Integrated Systems (CIS)
- Honda
- Texas Instruments Graduate Fellowship

Facilities:

15

Gate Stack Engineering by Atomic Layer Deposition

R. Sreenivasan¹, P.C. McIntyre¹, K.C. Saraswat²

¹ Department of Materials Science Eng., Stanford University
 ² Department of Electrical Eng., Stanford University

Thrust B, Project 2

Ultimate Goal

Our goal is to be able to fabricate the entire gate stack without exposure to the ambient. This process has the promise of preventing I.L growth during post processing.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Atomic Layer Deposition

Schematic of the ALD process

- Self-limiting growth
- Highly conformal, low defect thin films
- Very good step coverage
- Low temperature deposition
- Excellent control over film thickness
- Uniform thickness over large areas
- Good control of stoichiometry
- Abrupt interface to the substrate

(courtesy Hyoungsub Kim)

ALD Chamber Layout

ALD Process Parameters

	HfCl ₄	TDEAH
Substrate temp	300 °C	140°C
Bubbler temp	150 °C	65°C
Pulsing	1-60-1-60	1-50-1-50
Dep rate	0.5Å/cycle	0.75Å/cycle
Chamber wall	R.T	75° ℃
Oxidizer	H ₂ O	H ₂ O
N ₂ (carrier gas)	20 sccm	2.5 sccm
Process Pr	0.5 Torr	0.5 Torr

C-V Hysteresis

Precursor Effect on V_{FB}

Plasma Enhanced ALD of TaN

Isopropylimido tris(ethylmethylamino) tantalum (IPTEMT) Plasma Gas Mixture: Ar(1000sccm) $/N_2$ (80sccm) $/H_2$ (5sccm)

Plasma RF Power: 780W

Process Pr: 1.5Torr

Substrate Temp: 250 - 400°C

Ta precursor: IPTEMT (liq at R.T)

Pulse Times: 10-50-2-50 sec

Growth Rate: 0.45Å/cyl

XPS Spectra

TaxNy deposited @ 400°C showed 35% [N] and 25% [O] in the asdeposited sample. Carbon impurities in the bulk of the film were below the detection limits of the XPS.

The Ta $4f_{5/2}$ and $4f_{7/2}$ located at 26.7 eV and 24.8 eV resp indicates the as-deposited film to be stoichiometric Ta₃N₅.

In-situ TEM Annealing

700°C 800°C 850°C

The Ta_xN_y film deposited on Si/SiO₂ surface crystallized completely at 850°C to form cubic TaN. The observed spot pattern is that of (100) Si substrate.

Stoichiometric TaN

DF image showing TaN crystals after 850°C vacuum anneal

Ta 4f peak shift consistent with the phase change from Ta_3N_5 to cubic TaN

Summary and Future Work

- We have successfully grown high quality HfO_2 thin films on silicon substrates using the ALD process. The electrical characteristics of the HfO_2 films grown using TDEAH are far superior to those obtained using the chlorides.
- We have also optimized a plasma enhanced ALD process to deposit Ta_xN_y at 400 °C which crystallized into stoichiometric cubic TaN when annealed in vacuum at 850°C.
- We are currently working on integrating the two different processes to fabricate capacitors with HfO2 dielectric and TaN metal gate.
- The ESH implications of the Hafnium and the Tantalum precursors have been analyzed.

Improvement of NBTI of High-k by Incorporation of Fluorine

Kang-ill Seo

Raghavasimhan Sreenivasan Paul. C. McIntyre

Materials Science & Engineering, Stanford University

Krishna. C. Saraswat

Electrical Engineering, Stanford University

Task B-2

Selective Surface Preparation and Templated Atomic Layer Film Deposition: Novel Processes for Environmentally Benign Transistor Gate Stack Manufacturing

NBTI in MOS devices

What is Negative Bias
 Temperature Instability
 (NBTI) ?

→ Generation of interface traps (△D_{it}) and positive charges (△Q_f) under negative gate bias especially in elevated temperature.

→ V_T ↑, I_{off} ↑, I_{Dsat} ↓, g_m ↓ with time in p-channel MOS

MOSCAP structure & TEM

Amorphous HfO₂ with smooth interfaces

"F" effect on △Dit

• Based on R-D model, * $\Delta D_{it} = CE_{ox}^{s}exp(-E_{A}/k_{B}T)t^{\alpha}$

* Shigeo Ogawa and Noboru Shiono, *Physical Review B*, vol. 51 p 4218, 1995

→ △D_{it}(full F) < △D_{it}(under F) suggests gentle introduction of F at SiO₂/Si interface by F diffusion through HfO₂ is desirable.

"F" effect on ΔN_p

→ △N_P(full F) < △N_p(control) ≈ △N_p(under F) indicates that F passivates hole trapping sites in HfO₂ bulk or HfO₂/SiO₂ interface.

"F" SIMS profile of "local F"

stable bonds than "F" in bulk HfO₂.

Mechanism of "F" effects

Conclusion

- Demonstrate that "F" incorporation reduces NBTI significantly in "high-*k*(HfO₂) / metal gate" system (<50%); △D_{it} ↓, △N_P ↓, and △V_{hys} ↓.
- Demonstrate engineering of "F" profile to segregate at HfO₂/SiO₂ and SiO₂/Si interfaces is effective in reducing NBTI without deteriorating leakage current.

Acknowledgements

 Prof. Yoshio Nishi and Prof. Baylor B. Triplett for helpful discussions on electrical data. Prof. Mike Kelly for helping XPS analysis.

 Funding: NSF/SRC Center for Environmentally Benign Semiconductor Manufacturing, MARCO Center for Materials Structures and Devices, INMP program (Stanford)

Task B-3: Evaluating EHS Impacts of New Dielectric and Conductor Materials Etch Processes Modeling of Inductively Coupled Plasmas

Cheng-Che Hsu, Dr. Mark A. Nierode and Prof. David B. Graves Department of Chemical Engineering University of California, Berkeley Feb. 23-24, 2006 ERC Review Tucson, Arizona

ESH Impact of Etching Processes

By-products formation and transport have both process and ESH significance.

- Etching processes
 - Large set of chemistries
 - Potential toxic by-products.
 - Process is complicated, (through gas phase or surface reactions)
 but very little is known.
- ESH significance of by-products:
 - A: Wall re-deposition: potential threaten the worker.
 - B: Effluent: ESH Impact
- Goal
 - Understand mechanism
 - Identify/Predict the condition with minimum emission

- Methodology
 - Predictive model development
 - Validation: Exp. Testbed at UCB (Ar/O₂ plasmas)
 - Extend the model capability to different chemistries and reactors.
 - Assess process ESH impact.

System

Experimental System*

- Diagnostic ICP
 - Multiple Diagnostics
 - Fits 6-in wafer
 - Well-defined boundaries
 - Axisymmetric

Model

- 2D, Fluid Model
- Ar/O₂ ICP as the preliminary test
- FemlabTM and MatlabTM
 - Coupled neutral and plasma model
 - Easy to share / access
 - Easy to extend to different chemistries/systems
- *H. Singh, et. al, J. Vac. Sci. Technol. 19, 718 (2001),

- A fluid model solving for neutrals, ions, electron temperature, and E-field.
- With the developed iteration scheme, able to handle up to 9 neutral species, and 8 charged species (totally 22 equations) with PC (~1GB memory). Model is shown robust and easy to converge.
- Chemistries in Ar/O₂ plasmas:
 - Neutrals: ground state Ar, O₂, O, and metastable O₂ and O
 - Ions: Ar⁺, O₂⁺, O⁺, O⁻
- Model and Experiment Comparison
 - ne profile, center ne, and Te,
 - n_O, total ion flux and composition at the wall.

ne and Te comparison in Ar/O₂ Plasmas

nO, Ip and its composition comparison

Cal

Achievement and ESH Significance

- An ICP predictive model, couples neutral and plasma flow
 - Easy to converge, to share, and flexible (chemistries and systems).
 - Validated by a diagnostic ICP in Ar/O₂ plasmas.

Cal

- ESH significance: for commercial tools, e.g. AMAT Al etcher
 - Predicting pollutant flux to the wall and to the emission.
 - Predicting the condition that minimizes pollutant emission.

Acknowledgement

- NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
- University of California Discovery Grant through the Feature Level Compensation and Control Project
- Victor Vartanian, Brian Goolsby, Peter Ventzek, Da Zhang, Shahid Rauf, and Laurie Beu, Motorola APRDL
- Krishna Saraswat and Jim McVittie, Stanford (materials, device, profile)
- Rafael Reif and Ajay Somani, MIT (experiment)
- Bing Ji, Air Products (etch gases, plasma characterization)
- John Daugherty and Harmeet Singh, Lam Research (tool, wall interactions)

Thrust C Factory Integration

Overview

Thrust C Focus and Objectives

Resource Use Minimization

ESH Impact Assessment

Novel Low-energy Water Purification and Wastewater Treatment

Water Use Reduction During Wafer Rinsing

Water Reuse and Recycle Tools and Techniques for Rapid ESH Assessment of Chemicals:

- New chemicals
- New process-generated by-products

Development of Techniques for Integrated Assessment of ESH Impact
Treatment of PFOS in Semiconductor Effluents

Reyes Sierra and Jim Farrell

Dept. Chemical & Environmental Engineering University of Arizona

PFOS: A Critical Material in Semiconductor Manufacturing

PFOS/PFAS are critical constituents of leading edge photoresists for use as photoacid generators (PAGs) and surfactants in anti-reflective coatings.

Increasing evidence of the significance of PFOS/PFAS as <u>persistent - bioaccumulative</u> – <u>toxic (PBT) contaminants</u>.

Photolithography Semiconductor Industry

Regulatory agencies in numerous industrialized countries have initiated studies to quantify the use of perfluorinated chemicals, assess their potential risks, and consider regulations restricting or banning their use.

Need for Effective Treatment Methods

- In 2002, EPA finalized a <u>Significant New Use Rule (SNUR)</u> on 88 PFOS containing-formulations, requiring prior notice to the Agency for all manufacture/import except for specifically limited uses (eg. photomicrolithography in semiconductors).
- Excepted uses: low volume, low release, and no available substitutes.
- SNURs require notification to EPA 90 days in advance of commercialization of a chemical for a "significant new use". EPA can take action to limit or prohibit the new use.
- Need for effective methods to minimize environmental emissions of PFOS and maintain existing regulatory exemptions.

PFOS - Difficult for Treatment

Aerobic biotreatment:

Sinclair & Kannan, EST, in press

Advanced oxidation treatment:

O₃,O₃/UV,O₃/H₂O₂, H₂O₂/Fe²⁺ (Fenton's reagent) Schroeder & Meester, J. Chromatog.A, 2005, 1082:110

Activated carbon:

Unpublished reports

Membrane processes:

Poor effectiveness

Expensive

Ineffective

Ineffective

Disposal of concentrate!!

Properties of PFOS/PFAS

- > Environmental fate and transport is poorly understood.
- > Recalcitrance of fluorinated compounds:
 - Stable and chemically inert
 - High strength of C-F bond (485 KJ/mol)
 - Rigidity of perfluorinated chain
 - Absence of structures susceptible to electrophilic or nucleophilic attack.

PFOS does not appear to hydrolyze, photolyze or biodegrade under environmental conditions.

PFOS Research at the UofA

SRC/ERC seed project: Assessment of Physico-Chemical and Biological Methods for the Removal of PFOS in Semiconductor Effluents. (2005-2006). PI: R. Sierra¹

NSF Small Grant for Exploratory Research: Electrochemical Degradation of Perfluorinated Compounds. (2005-2006). PIs: J. Farrell¹ and S. Raghavan²

SRC/ERC project: Reductive Dehalogenation of Perfluoroalkyl Surfactants in Semiconductor Effluents. PIs: R Sierra ¹, N. Jacobsen ³, V. Wysocki ³

SRC/ERC project: Destruction of Perfluoroalkyl Sulfonates in Semiconductor Effluents using Boron Doped Diamond Film Electrodes . PIs: J. Farrell ¹, R. Sierra ¹, S. Raghavan ²

¹ Dept. Chem. & Environ. Eng.; ² Dept, Materials Science & Eng., ³ Dept. Chemistry

Physico-Chemical & Biological Methods for the Removal of PFOS in Semiconductor Effluents

Objectives

Evaluate the effectiveness of four approaches for the removal of PFOS in semiconductor effluents:

- Microbial reductive dehalogenation
- Biomimetic reductive dehalogenation
- Activated carbon adsorption
- Biosorption

Reductive Dehalogenation

$R-F + 2e^- + 2H^+ --> R-H + HF$

Reductive dehalogenation is the main means of degradation of highly halogenated organics. Eg. PCE, PCBs, PBDEs.

Reductive Dehalogenation

Reductive Dehalogenation:

Biomimetic Degradation with Ti(III)citrate/cobalamin

Preliminary evidence that some F atoms are removed from PFOS

Preliminary Conclusions

- PFOS is susceptible to <u>biomimetic reductive dehalogenation</u> by Ti(III) citrate/vitamin B12.
- Important implications: partially defluorinated PFOS derivatives, comparable to the products expected from reductive defluorination, are susceptible to biodegradation by aerobic bacteria.
- These findings suggest that <u>microbial reductive defluorination</u> of PFOS might be possible.

Destruction of Perfluoroalkyl Sulfonates in Semiconductor Effluents

Objectives

Investigate a new hybrid treatment technology involving <u>electrochemical</u> and <u>microbial concepts</u> for the removal of PFOS and related perfluorinated organic compounds in semiconductor effluents.

- Determine the feasibility of electrochemical destruction of PFOS and related PFAS compounds using boron doped diamond (BDD) film electrodes.
- Determine the degree of electrolysis required to generate products that are readily biodegraded in municipal wastewater treatment plants.
- Develop an adsorptive method using hydrophobic zeolites and/or anion exchange resins for concentrating PFAS compounds from dilute aqueous solutions.

Preliminary Results

PFOS can be both oxidized and reduced at Boron Doped Diamond (BDD) film electrodes Oxidation and reduction of PFOS releases fluoride ions

EHS Benefits

- Both <u>reductive dehalogenation</u> and <u>electrochemical</u>
 <u>treatment</u> of perfluorinated compounds are
 expected to lead to products amenable to
 biodegradation, which can be removed effectively
 in existing biological treatment infrastructure (eg.
 municipal wastewater treatment plants).
- Compound mineralization is advantageous over alternative techniques (e.g. adsorption, membrane processes, ion exchange) which generate residuals and brines.

Industrial Liaisons

Walter Worth:

Sematech

Thomas P. Diamond:	IBM
Jim Jewett:	Intel
Laura Mendicino:	Freescale Semiconductor
Tim Yeakley:	Texas Instruments

Lowering Resource Utilization During Cleaning, Rinsing, and Drying

<u>Real-Time and In-Situ Detection of Residual Contaminants in</u> <u>Micro- and Nano- Structures</u>

Subtask C-2-1

Jun Yan¹, Kedar Dhane¹ Bert Vermeire² and Farhang Shadman¹

¹Chemical and Environmental Engineering, UA Electrical Engineering, ASU

Joint work with Freescale on Fab-scale experiments

Objectives

• Develop efficient cleaning, rinsing, and drying techniques; important to reduce: resource utilization, waste, processing time, and cost.

Method of Approach

- Understand the fundamentals of residual impurity removal from wafer surface and from inside micro- and nano- features
- Needed tool: on-line and real-time metrology technology for both research and Fab-level applications

Fundamental Steps in Rinse Process

Factors	Bulk	Boundary Layer	Surface	Channels [*]
Primary Mechanism	convection	diffusion	desorption	diffusion/ desorption
Secondary Mechanism	dispersion	convection	multi-component displacement	desorption/ diffusion
Characteristic Time	L/U	d²/D	1/k _d	$I/k_d + (cd)^2/D_{eff}$
Process Time Scale (sec)	1 - 3	10 - 60	10⁻¹ - 10⁵	1 - 10 ⁶
Effect of Flow	direct, strong	indirect, mild	no effect	no effect
Effect of Temperature	negligible	mild	strong	mild
Effect of Additives	no effect	no direct effect	potentially strong effect	potentially strong effect

* Width <10 micron, aspect ratio>4

Electro-Chemical Residue Sensor (ECRS)

<u>ECRS Sensitivity to</u> <u>Impurity Concentration and Type</u>

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Dependence of Cleaning Dynamics on Feature Size

t 99.99 is the time needed for 99.99% clean up of residual sulfate ion

Effect of Feature Size on End-Point Contamination

Effect of Temperature and Feature Size on Required Rinse Time

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effect of Feature Size on High-Temperature

Cleaning Time

Cleaning time is to achieve surface concentration 9.993x10⁸ molecules/cm² Contaminant: residual sulfate ion; trench depth: 5µm

Sensor Response to Drying Processes

Sensor Reveals Drying Mechanism

Electrostatic Interactions

Mass Balance equations:

$$\frac{dC}{dt} = \nabla \cdot (D_{AB} \cdot \nabla C + z \cdot \lambda \cdot F \cdot C \cdot \nabla \phi)$$
$$\frac{\partial C_S}{\partial t} = \left[k_a C(S_0 - C_S) - k_d C_S \right]$$
$$\nabla^2 \phi = -\frac{\rho_e}{\varepsilon \varepsilon_0} = -(\rho_\infty e / \varepsilon \varepsilon_0)^* \exp(-z^* e^* \phi / (k^* T))$$

The electrostatic interactions become more significant as feature size decreases and purity requirements increase.

Lowering Resource Utilization During Cleaning, Rinsing, and Drying

Drying of Thin Porous Films and Micro- and Nano-Structures

Subtask C-2-5

Junpin Yao, Asad Iqbal, Harpreet Juneja, and Farhang Shadman Department of Chemical and Environmental Engineering University of Arizona

Jointly with Sematech Interconnect Group

Experimental Setup

Experimental Procedure

Experimental procedure

Adsorption at 30°C

Desorption at 30°C

Bake-out at 100, 200 & 300°C

Temporal profile of adsorption (challenge 110 ppb moisture), followed by temperature-programmed desorption as measured by mass spectrometer

Moisture Adsorption Loading

Challenge Concentration : 56 ppb

• Low-k has much higher sorption loading than SiO₂

SiO₂

Δ Electronegativity $$	1.7
-OH site density	4.6 x 10 ¹⁴
(#/cm²)	

p-MSQ $C_{film0} = C_{gp0} \varepsilon + C_{s0} (1-\varepsilon)$ $C_{s0} = C_{gb0} * S$

C_{gbo} = challenge moisture concentration

C_{gpo} = equilibrium moisture conc. in the pore

C_{so} = equilibrium moisture conc. in the matrix

C_{filmo} = total moisture loading in molecules per unit volume of the film

 ε = porosity, S = solubility

Moisture Retention after Isothermal Purge

- 45-50% of adsorbed moisture removed from SiO₂ during isothermal N₂ purge
- Only 15-25% of absorbed moisture removed from low-k

Effect of Low-k Film Thickness

Challenge Conc: 56 ppb; Temperature: 30°C; Porosity: 0.48

Effect of Purge Gas Flow Rate

Challenge Conc: 56 ppb; Temperature: 30°C; Porosity: 0.48

Effect of Purge Gas Purity

Challenge Conc: 56 ppb; Temperature: 250°C; Porosity: 0.48

Effect of Low-k Film Porosity

Challenge Concentration : 56ppb; Temperature : 30°C

Acknowledgement

- SEMATECH: providing samples
- Freescale: joint work on testing the ECRS in a commercial rinse tool.
- American Semiconductor: assistance in fabrication
- On Semiconductor: joint work on testing test the ECRS in a commercial drying tool.
- Environmental Metrology Corporation (start-up): joint work for commercialization

Highlights of

Other Thrust C Projects

Process Simulators and Test Beds for Water Recycling

Blowers, Ela, Shadman (UA)

Bio-Treatment of Waste Containing Organics and Copper

Field, Ogden, Sierra (UA)

Search for Improved Promoters in TiO₂ Catalytic Oxidation

<u>CMOS-Based Micro-Arrays</u> for Rapid Assessment of Chemical Toxicity

Mathine, Runyan (UA, NIEH Centers)

Disclosure filed for patent application

Methods of Approach

Electro-optical detector

Cell-Based Biosensor

Cells Cultured in the Bio-Chamber

Seed Projects Partially Sponsored by ERC Ogden, Blowers, Raghavan (UA)

- 1. Treatment of Copper in CMP Waste Streams Using Polyethyleneimine
- 2. Filtration and Biotreatment Scheme to Reclaim and Recycle CMP Wastewater
- 3. Megasonic Cleaning in Semi-Aqueous and Non-Aqueous Media
- 4. Minimizing Usage of IPA for Tool Cleaning

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Graduate Students in Thrust C

- Brett Belongia (Mykrolis)
- Dawn Lowman (U Utah Medical School)
- Iouri, Beregovskii, (JPL)
- Gray Bohon (Intel)
- Elizabeth Castro
- Kai Chen
- Gary Chen (Micron Technology)
- Soon Chon (Intel)
- Brian Conaghan
- John Croft (Intel)
- John DeGenova (TI)
- Kedar Dhane
- Daniel Frayer (Bechtel)
- Victor M Gamez
- Andrew Hebda (Freescale)
- Jeremy Hollingsworth (Brown and Caldwell)
- Asad Iqbal
- Harpreet Juneja
- Kon-Tsu Kin (ITRI)
- Elena Krikanova (IBM)
- Nikhil Krishnan (Columbia University)
- Taehoon Lee (Cypress Semiconductor)
- Yi Ling
- Yi Liu
- Majid Mansoori (TI)
- Sergio Martinez (TI)
- Morven McAlister (Pall)

- Lillian Mena-Acevedo (Pharmacia)
- Robert Morris (Raytheon)
- Valeria Ochoa
- Yierra Padillas
- Viraj S. Pandit
- Srinivasan Raghavan (TI)
- Prashant Raghu (Intel)
- Gregory Romas (TI)
- Karla Romero (AMD)
- Arturo Ruiz-Yeomans (AMD)
- Farrokh Salek
- Michael Schmotzer
- Matt Scholz (Max Planck Institute)
- Daniel Seif (AMD)
- Hrishi Shende
- Peter Skrdla (Merck & Co.)
- Leah, Stanley (Intel)
- Nadia Syvestry-Rodriguez
- Subramanian Tamilmani (Intel)
- Sara Thurwachter (McKinsey & Co.)
- Mohith Verghese (ASM)
- Worawan Maketon
- Baochun Wu (IBM)
- Jun Yan
- Jacky Yao
- Umur Yenal
- Chris Yim (AMD)

Thrust D

Dry Processing and Manufacturing Step Reduction

Faculty (in order of presentations):

Karen K. Gleason, Chemical Engineering, MITTask D.1Christopher K. Ober, Materials Science & Engineering, CornellTask D.1Anthony Muscat, Chemical Engineering, UATask D.5

Tasks:

D1: Solventless Lithography

D5: Supercritical CO₂ Processing (Muscat)

Notes:

D2: Additive Processing (graduated 2002)

D3: Decision Making (moved to Thrust C)

D4: Drop Ejection of Photoresist and Low k Dielectrics (graduated 2005)

Chemical Vapor Deposition: Direct Patterning and Selective Deposition Thrust D (Task 425.006)

Yu (Jessie) Mao, Hilton Pryce Lewis, Sal Baxamusa, and Karen Gleason Department of Chemical Engineering, MIT

> Nelson Felix, Victor Pham, Gina Weibel, and Chris Ober Department of Material Science, Cornell

Opportunities for Thrust D

Goal: Superior Performance with Environmental Responsibility

Started October 1998 via extension funding from NSF

Proposed Evolution of Dielectric Patterning

Progress in patterning of CVD Films

initiated CVD (iCVD)

Polyacrylics by iCVD

iCVD P(MCA-MAA) Copolymer

Cornell University

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Plii

Control of MW and Sensitivity

iCVD Reactor (hot filaments)

piCVD Reactor (no filaments)

FTIR poly (glycidyl methacrylate) [PGMA]

Photo-initiation

Preliminary Work: Selective Deposition by piCVD

resolutions improvement expected with
substrate preparation (H terminated wafers instead of PMMA films)
exposure optics

future work: demonstrate selective piCVD of low k films from commercial precursors and molecular glass precursors synthesized in the Ober group

Lithographic Processing Using Supercritical CO₂

Nelson Felix¹, Victor Pham¹, Gina Weibel¹, Yu (Jessie) Mao², Karen Gleason², James Watkins³, and Christopher K. Ober¹

¹Department of Materials Science, Cornell University ²Department of Chemical Engineering, Massachusetts Institute of Technology ³Polymer Science and Engineering Department, University of Massachusetts, Amherst

Advantages of Supercritical CO₂ Development

Next Generation Lithography: Key Problems

Fundamentals of Supercritical CO₂ Solubility

Processing Non-Polar Materials / Low- κ

• High selectivity between exposed and unexposed regions under supercritical CO₂ development conditions

Positive Tone Resists for scCO₂ Development

Two-step positive-tone

Pham, V Q.. et al., Chem. Mater. 15(26), 2003, 4893-5.

Intrinsic positive-tone!

Reducing Fluorination: Using Cosolvents

Molecular Glass Resists for CO₂ Solubility

Due to their small size, molecular glass resists of all types have **potential for CO₂ solubility...no fluorine needed**!

Future Projects

- Use film-forming precursors based on molecular glass photoresists
 - Comprised of structures similar to current C- and Si-based low-κ materials
- Use scCO₂ to develop features and remove sacrificial porogens

Chemistry on Semiconductor Surfaces in Supercritical CO₂

Bo Xie, Lieschen Choate, Eduardo Vyhmeister, Michael Durando, and Anthony Muscat Department of Chemical and Environmental Engineering University of Arizona, Tucson, AZ 85721

NSF/SRC EBSM ERC Annual Review February 23-24, 2006 in Tucson, AZ

Microelectronics Applications of scCO₂

University Research

Photoresist development – U. of Cornell/MIT

Chem. Mater., 15, 4893, 2003, Chem. Vap, Dep. 7, 195, 2001

- Photoresist drying U. of Wisconsin/IBM JVST B, 18, 3313, 2000
- Spin coating U. of North Carolina Ind. Eng. Chem. Res., 43, 2113, 2004
- Metal and low-*k* film deposition U. of Mass Amherst, U of Idaho *Chem. Mater.*, **15**, 83, 2003., *Chem. Mater.* **16**, 2028, 2004, *Science*, **294**, 141, 2001, *Science*, **303**, 507, 2004
- Low-*k* film damage repair U. N. Texas/TI, U. of Missouri/TEL/SSI, U. of Arizona J. Vac. Sci. Technol. B, 22, 1210, 2004
- Low-*k* film pore capping U. of N. Texas/TI, U. of Arizona *Microelec. Engin.*, **80**, 17, 349, 2005
- SiGe surface preparation U. of Arizona Mat. Sci. Semi. Proc., 8, 1-3, 231, 2005
- Cu etching U. of North Carolina, U. of Mass Amherst, U. of Arizona J. Am. Chem. Soc. 125, 4980, 2003, Chem. Mat., 17, 1753, 2005

Supercritical Fluids: definition

Cu/Low-k Process Integration

- Contamination
- Etching and ashing residue
- PR, Cu, Cu oxides, and barrier metal

Cu

- Preserve film properties
- Dielectric constant
- Hydrophobicity
- Practical issues
- Pore sealing
- Cu barrier
- Maintain device structure
- Critical dimension
- Etching profile
- Remove Cu oxides without removing Cu

Contamination

•

Veils

- trapped in pores **Damage**
- CH₃ depletion
- Si-OH groups
- Materials compatibility
- low-*k* film
- Cu interconnects
- TiN or TaN diff. barriers
- Si₃N₄ or SiC etch stops

Repair & Capping Molecules

- Leaving group effects in Cl, Br, I series
- One or more reactive head groups ٠
- Chlorosilane vs disilazane

Dielectric Constant after Silyl Treatments

- 4284A Agilent Precision LCR Meter, 1MHz, -40V to +40V sweep
- 100nm thick, 0.1cm diameter Au gate, 100nm thick Au on the wafer backside
- Capacitance in accumulation is used to determine dielectric constant

Film Thickness after Silyl Treatments

Ellipsometric Porosimetry: HMDS/scCO₂

 HMDS/scCO₂ sample processed at 204 atm and 58C with a 2 min soak reduced open porosity, but yielded similar pore size distribution.

Pore Capping: Ellipsometric Porosimetry (EP)

- Pore capped after MTCS and MTCS followed by TMCS processing with moisture
- Pore not sealed after MTCS followed by TMCS processing without moisture

MTCS/scCO₂ Pore Repair

Conclusions

- Increased CH₃, CH₂, and Si-O-Si moieties
- Both isolated/geminal SiO-H and H-bonded SiO-H reacted except for MTCS
- Recovery of hydrophobicity with all silylation chemicals studied
- Both ellipsometry and contact angle results show that TMBS, TMIS, DMDCS, and MTCS exhibit higher reactivity than TMCS
- Restoration of dielectric constant with HMDS, TMCS, TMBS, TMIS, DMDCS, BDMCS, ODMCS, DDMCS, and ODDMCS
- Pores capped after MTCS + TMCS + moisture process based on EP
- Longer time needed for liquid silylation than supercritical silylation

Future Work

- Chemistries
- Patterned p-MSQ films
- Low-*k* materials: microporous vs mesoporous
- Delivery methods

Cu processing in scCO₂

- Applications
- Cu etching
- Cu contamination removal
- Cu deposition

- Maintain device structure
- Critical dimensions
- Etching profile
- Remove Cu oxides without removing Cu

- scCO₂ integration
- Inert to low-k dielectrics, metals
- Penetrate small features
- Hydrophobic

- Materials compatibility
- low-*k* film
- Cu interconnects
- TiN or TaN diff. barriers

- Processing
- Low Temperatures (< 100 °C)
- High Pressures (> 70 atm)
- Cosolvents/additives

XPS and SEM Analysis

- Exposure to hfacH in scCO₂
- CuO on surface is etched away
- Etching rates calculated as function of:
- temperature
- concentration
- additives

Conclusions

- Cu films can be etched using dissolved chelators in scCO₂
- Reaction conditions are tightly controlled using custom apparatus
- Etching reaction exhibits Arrhenius temperature dependence
- Reaction order indicates surface inhibition
- Etching rates increase with increasing temperature and concentration of hfacH

Future Work

- Additives/catalysts
- Explore near-critical region
- Other etching chemicals
- Delivery methods

Technology Goals

MPU Interconnect Technology Requirements (Table 81b ITRS 2004 update)

Year of production	Technology Node (nm)	MPU/ASIC 1/2 Pitch (nm)	No. of Metal Levels
2010	hp45	54	12
2013	hp32	38	12
2016	hp22	27	14

- Requires <u>etching, cleaning, and filling</u> high aspect ratio, sub-50 nm structures.
- Repeated 3-6 times per wafer.
- Increase in complexity of integration because of new material sets and novel structures .

Advanced Cleaning Technology Options

Liquids

- Surfactants
- Etchants
- Chelators
- Supercritical CO₂
 - Low tension surface
 - Wet any material
 - Penetrate sub-50 nm features
 - Tune solvent strength and function with additives
 - Etchants
 - Chelators

Acknowledgements

- NSF/SRC EBSM Engineering Research Center (EEC-9528813/2001-MC-425)
- Sematech
 - Eric Busch (Low-*k* Unit Process Development Program Manager, AMD Assignee)
 - Steve Burnett (ESH Program Manager)
 - Frank Weber (Interconnect Division, Infineon Assignee)
 - Todd Rhoad, Process Engineer
 - Brian White, Project Engineer
- Texas Instruments (TI-SRC Custom Research)
 - Phil Matz
- IMEC
 - Toan Le Quoc