Methodology for environmental impact evaluation – 2-D vs 3-D case study

Task A-1

ERC Review Meeting Tucson, AZ February 23rd - 24th,2006

Ajay Somani, Sarah Jane White, Duane Boning, Philip Gschwend and Rafael Reif Massachusetts Institute of Technology, Cambridge MA

Objectives of Project

- Develop methodology to analyze environmental impacts for new process technologies
- Construct a corresponding database which is more transparent than previous LCA studies
- Identify critical unit processes that need to be designed with environmental considerations in addition to performance and cost

Description of Approach / Methodology

- Identify boundaries for analysis (wafer fabrication)
- Define functional unit for comparison (e.g., # of transistors)
- Generate environmental footprint for fabrication of a standard IC functional unit with chemical/material specificity
- Compare alternative fabrication technologies with respect to performance, cost and environmental footprint
- Identify critical unit processes which have performance, cost, or environmental issues
- Design new unit process approaches to improve performance, cost AND environmental issues

MIT's 3-D Process Flow

Handle

_		-
		-
	1	
S	SOL	

2. Bond to handle wafer

Sacrificial
Bond

Case Study: 2-D vs. 3-D

- Functional unit is quite a challenge in comparing 2D vs 3D technologies
 - Integrating cross functionality in case of 3D
 - No meaning of Si real estate
 - No real product available (so far)
 - Need to define functional unit depending on what is currently integrated for SoC (System on Chip)
 - 1 Logic + 1 Cache (high-speed SRAM) + 1 DRAM memory
 - Packaging has to be considered in this option
- Standard 2D IC energy inventory is known^{1,2}; but full environmental footprint remains to be done
- New/additional 3-D unit processes were identified
 - <u>Grinding</u> has been estimated using oxide CMP, not exactly new to CMOS but not very common
 - <u>Bonding</u> was another new process has been estimated like annealing (with pressure term as another additional energy consumption)
 - <u>Handle wafer bonding and releasing</u> is new to IC technology, there is no standard process developed yet for this technology so still in design phase and can be designed as environmentally benign

¹ Murphy et al., Environ. Sci.& Tech., Vol. 37(23), pp 5373-5382

² Boyd et al., presentation at MRS 2005

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

2-D vs. 3-D in Terms of Processes

Unit operation	2D process flow (for one wafer)	Additional 3D processes in flow
Photo/stepper/ashing	25	1
Dry Etch	13	2
Wet etch/Clean	31/14	3/4
CVD	11	1
CMP	14	2
Sputtering AI	1 (0.5 µm for metal 1)	2 (20 µm)
Sputtering Ta/Cu	6	1
Electrodeposition Cu	6	1
Bonding	0	2
Grinding	0	1

First-Order **Energy** Comparison 2-D vs. MIT's 3-D Process Flow

- <u>Sputtering</u> twice 20 micron AI for release layer involves a large energy consumption
- Bonding and Grinding are new processes that need to be evaluated
- Besides these, other processes add only incrementally to full process flow; so initially ignored
- <u>Grinding</u> can be estimated using CMP; it takes a bit longer to thin wafer, but energy usage must be similar
- <u>Bonding</u> can be estimated using a typical high-vacuum process with thermal budget of 300 °C for half an hour

Handle Wafer: Function and Issues

- Use of a handle wafer may play an important role for 3D IC fab'
- Handle wafer bonding and release is one process for which no standard process data exist
- This presents a unique opportunity for DFE (Designing for Environment) white still accounting for performance and cost.
- This process, unlike other processes, does not influence any process upstream or downstream for our particular study
- Function
 - For thin-first approaches, handle wafer is mechanical support
 - It also provides repeatability of stacking
- Issues
 - Withstand grinding for 600 microns
 - Withstand wet etch-back of Si (TMAH)
 - Should etch selectively to other bonding layer (in our case Cu-Cu)
 - Bonding and release thermal budget is limited by back-end
 - Release with ease

Handle Wafer Options

Al release layer¹

- Described in MIT 3-D IC
- Requires 20 µm Al (twice) on each handle and device wafer
- Cu-Cu bonding, use Ta
- Yield is still an issue ~ for die level, works fine

Smart cut release²

- H₂ implant @ 150KeV
- High energy and expensive
- Use oxide-oxide bonding
- Thermal energy required to release
- Yield is good

Oxide release structures

- Similar oxide-oxide bonding
- Channels etched in handle wafer for release
- Nitride used as etch stop
- 49% HF used for release
- Yield is good but still to prove layer transfer work in progress

¹ Fan et al., Electrochem. Solid State Lett., 2, 534 (1999)

² Tan et al., SOI Conference 2005

Comparison of Handle Wafer Options

Overall comparison	Al release	Smart cut	Oxide release
Yield (performance)	10% - depends on Cu-Cu bonding and mass transfer of acid	80% - work with oxide bond subjected to CMP oxide	80% subjected to functionality – as layer transfer is yet to be proven
Cost -additional	Cost for depositing Al on Si wafer which means 1.2 X	Cost for H ₂ implantation which is 10 X	Oxidation, etch along with one CMP which means 1.2X
Environmental - additional	Illustrated very brie	fly in table below.	

Environmental comparison for additional steps	Al release	Smart cut	Oxide release
Energy	50-100 KWH primarily Al sputtering	20-40 KWH primarily H ₂ implant	10-20 KWH oxidation, CMP, Photo and etch
Water	Primarily PCW for cooling AI dep./ Wet etch requires DI water	PCW for implantation, CMP and annealing	PCW for oxidation, etching and CMP, DI water for wet etch in 49% HF
Chemical (inputs)	Al, HCITa, Cu	H2, SiH2Cl2, O2, CMP slurry, piranha	SiH2Cl2, O2, CMP slurry, NH4, HF, piranha, photoresist
Chemical (outputs)	AICI ₃ , HCI	Oxide CMP waste, oxide dep. exhaust	Oxide CMP waste, oxide and nitride dep. exhaust, HF, SIF4

- Overall comparisons of different handle wafer options are considered in table above
 - Performance here primarily is denoted by yield
 - Cost are estimates and they are expressed in terms of one Si wafer cost
 - Additional means processes required for that handle wafer option
 - Environmental comparison of different handle wafer options in qualitative way has been illustrated in table below
 - Energy has been guess estimated based on which processes are energy intensive in that option
 - Water usage process cooling water (PCW), de-ionized (DI) water for cleaning
 - Chemical Inputs depending upon process and similarly probable outputs were listed
 - Contrast manufacturing fluxes with estimates of natural fluxes (e.g., Ta)

Conclusion and Future Work

- Methodology for environmental evaluation has been established
 - Establish environmental footprint (energy and specific material uses) for standard flow
 - Compare it with new/additional significant processes
- MIT <u>3D technology</u> serving as case study from energy standpoint
 - Will consider similar technology comparisons for other environmental axes such as air emissions of specific compounds
- Identified <u>handle wafer</u> as critical process in 3D IC
- Comparing different options for handle wafer on three axes: performance, cost and environment

Solventless Low k Dielectrics (Task 425.001: ERC EBSM)

Tom Casserly⁺, Kelvin Chan⁺*, April Ross⁺ and Karen Gleason Department of Chemical Engineering Massachusetts Institute of Technology

> *now at Applied Materials +SRC Fellowships

Evolution of Low-k Dielectrics

Either increasing fragile porous low k materials must be integrated

or

A robust sacrificial layer must be integrated which can form air in the final step (sacrificial layer = 100% porogen)

"Let's face it. The air gap is a pretty crazy idea. Rather than filling the space between interconnecting wires with anything that would increase line-to-line capacitance and RC delay, just go straight for the best performing low-k dielectric of all: Air. More unusual things have happened. Like effectively taking sandpaper to your device — later perfected into the state-of-the-art technology of CMP."

Laura Peters, Senior Editor -- 1/1/2005, Semiconductor International

• Havemann and Jeng (TI), US Patent 5461003, 1995.

• Anand *et al., IEEE*, 1997.

"For solids in which all atoms are able to form two or more bonds, the percolation of rigidity occurs at an average connectivity number of 2.4*"

* J. Phillips, J. Non-Cryst. Solids 34, 153 (1979)

Ross AD and Gleason KK, J. Appl. Phys. 97, 113707 (2005)

100% T groups gives a matrix just at the percolation threshold

Density Functional Theory for OSG Precursors

Air-Gap Fabrication

- Ordinary Sacrificial Materials
 - Require physical contact with etchant/solvent for selective removal
 - Surface-tension problems for wet processes

Self-Decomposing Sacrificial Materials

- Requires no agent for removal
- Dry removal process (heat, UV, e-beam)
- Allow fabrication of closedcavity structures

CVD sacrificial layers

- evolutionary from CVD silicon dioxide and from OSG low k materials
- □ environmentally attractive

Plasma Enhanced

 nonselective chemistry
uncontrolled crosslinking which gives rise to char formation: unsuitable for sacrifical layers

Initiated

- selective bond scission
- systematic compositional variation using feed gas
- controlled cross-linking
 - □ increases solvent stability (insolubility, lack of swelling)
 - increased thermal stability
 - increased mechanical strength
 - □ designed to prevent char formation

- iCVD process characteristics:
 - □ low energy input (<10 watts for 200 mm wafer)
 - □ low-temperature process
 - (substrate at ~ room temperature)
 - no ion bombardment or UV irradiation (no plasma)
 - □ All-dry process, no worker exposure to solvents

CVD Sacrificial Layer Chemistry

monomer cyclohexyl methacrylate (CHMA) crosslinker ethylene glycol dimethacrylate (EGDMA) initiator tert-butyl peroxide

Stable under normal temperatures and pressures. Hazardous Decomposition Products: carbon monoxide, carbon dioxide. Hazardous Polymerization: Will not occur. Potential Health Effects: Causes eye and skin irritation.

Carcinogenicity: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA.

Stable under normal temperatures and pressures.

Irritating to respiratory system.

LD50/LC50: Oral, mouse: LD50 = 2 gm/kg; Oral, rat: LD50 = 3300 mg/kg. Carcinogenicity: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA

Stability : Explosive if heated, subjected to shock, or treated with reducing agents. Highly flammable. Refrigerate. IPR-RAT LD50 3.210 g/kg : ORL-RAT LD50 > 25 g/kg Carcinogenicity: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA

Cross-link Density (FTIR & XPS)

degree of crosslinking can be systematically adjusted
impossible to spin cast insoluble crosslinked material

Control using Surface Concentration

Quartz Crystal Microbalance (QCM) measures surface concentration of monomer, [M], in the absence of reaction

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Film Properties

- Does not dissolve in any commonly used solvents: photoresist can be removed by dissolution instead of ashing.
- Decomposition > 99.7% by thickness (VASE). Crosslinking via the dimethacrylate monomer is key.
- Onset temperature of decomp. ~ 270 °C (ITS)
- Good adhesion to substrate and photoresist
- High etch rate in oxygen RIE (0.35 µm/min). Eliminates the need for a hard mask, an economic and environmental improvement over previouslyreported spin-on sacrificial materials

Fabrication

•no hardmask•RIE resist strip

With better lithography, smaller feature sizes can be fabricated.

- Local bonding environments in OSG films determine mechanical strength: all "T" groups represents a percolation of rigidity limit.
- Density functional theory (DFT) calculations for new precursors predict the likelyhood of formation of local bonding environments in OSG films.
- iCVD sacrificial layers represent a evolutionary and environmentally friendly strategy for the integration of air gaps.
 - controllable crosslinking which cleanly degrades
 - □ no hardmask required for fabrication

Environmentally Benign Precursors for Pore Sealing and Repair of Porous Low-k Films

W. Shannan O'Shaughnessy, Karen K. Gleason

Department of Chemical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139

> Sri Satyanarayana, Eric Busch Sematech Project Advisors

Goals and Approach

- Goals
 - Utilize environmentally benign precursors and process to deposit hermetic sealant for porous low-k films
 - Requirements:
 - Dielectric constant ~2.3
 - Adhesive to substrate
 - Block subsequent ALD metal precursors from invading porous layer
- Approach
 - Baseline data on parylene thermal CVD process originally developed at RPI (molecular caulking)
 - Novel CVD strategy to improve adhesion of the pore sealing layer to the porous organosilicate glass (OSG) low k
 - chemical similarity of new monomer, V₃D₃, to OSG layer is expected to enhance adhesion
 - large cyclic structure is expected to produce pore sealing
 - potential to covalently tether the new monomer to the OSG

Parylene for Pore Sealing

Gorham Process

~30 Å parylene deposited on substrate with porous dielectric

Novel Organosilicon Pore Sealing Material

Trivinyl-Trimethyl-Cyclotrisiloxane (V₃D₃)

Azo-t-Butane

- Deposition in 1-D flow "pancake" reactor
- Initiator broken down by heated filament
- Conditions:
 - Pressure = 250 mTorr
 - Filament Temperature = 500°C
 - Stage Temperature = 80°C
 - Total Gas Flowrate = 18 sccm
 - Precursor : Initiator Ratio = 5:1

no plasma

Potential Organosilicon Structure

Novel Monomer may deposit with preferential orientation to more effectively seal pores in low k dielectric

V_3D_3 Material Physical Properties $\frac{1}{2}$

- Insoluble in all tested solvents
 - Water, IPA, Acetone, DMSO, DMAC, DMF
 - Insolubility beneficial for subsequent processing steps
- Low Dielectric Constant
 - Multiple samples tested with values 2.3 2.5
- Highest possible adhesion rating on silicon substrates
 - ASTM Tape Test D3359-02
 - No change in adhesion after boiling in DI

- Very smooth coatings obtained at optimized conditions
- Minimizes required polishing prior to subsequent processing

AFM of V3D3 Film

Low peak to peak roughness in addition to overall RMS roughness

-2.00	MMMMMM		r		L RMS lc Ra(lc) Rmax Rz Rz Cnt Radius Sigma	29.297 nm 0.239 nm DC 0.059 nm 0.240 nm 0.175 nm 4 290.19 nm 0.113 nm
0	0.50 µm	1.00	1.50	Surface dist	ance	29.319 nm
4gr21110.002		DC	um	Horiz distan Vert distance Angle Surface dist Horiz distance Angle Surface dist Horiz distance Vert distance Angle Spectral per Spectral free Spectral RMS	ice (L) ance ice ance ce ance ice inod amp	29.297 nm 0.719 nm 1.405 ° DC 0 /µm 0 nm
Cursor: fixed	Zoom: 2:1	Cen line:	off offs€	et: Off		

Cross-section SEM images after M1 trench processing

Ambiguous Results

- Coating may be pealing away from metalization
- Need electrical testing to confirm or discount

Sematech Confidential, ERC Sensitive

TEM of Pore Sealed Dielectric Stack Cross-Sections

- Parylene baseline process
 - Metal particles present at base of porous layer
 - Incomplete pore sealing
- V3D3 sealed sample
 - Some metal still apparent at interface
 - Improved vs parylene
 - Require further analysis to determine if electrical properties improved

Parylene Sealed Sample

V₃D₃ Sealed Sample

Electrical Data

- Electrical testing of V3D3 coating vs. parylene coating shows improved pore sealing
 - Decreased capacitance
 - Increased Resistance
- Future testing of blanket wafers to confirm

Sematech Confidential, ERC Sensitive

- Conclusions:
 - V3D3 polymer shows promise as environmentally benign pore sealing material
 - Low dielectric constant
 - Smooth
 - Adhesive to silicon
 - Decreased metal encroachment into porous layer & improved electrical properties vs. parylene
- Future Work
 - Further electrical testing to confirm pore sealing properties
 - Deposit on blanket porous low-k wafers for electrical impedence testing
 - Asses preferential depositional properties on silicon vs. copper
 - Avoid increased resistance due to blocked vias
 - Improve thermal stability
 - Films stable to 350°C, move to 400°C
Progress in Modeling and Optimization of Multilevel Copper Metallization

Hong Cai – Ph.D. Candidate, MSE Prof. Duane Boning, EECS

Microsystems Technology Laboratories Massachusetts Institute of Technology

Thrust A: Back-End Processing Subtasks A4-1 and A6-3 ERC Annual Review, February 2006

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

1

Project Objectives & ESH Impact

- Performance of copper CMP depends strongly on pre-CMP topography. We want to model both electroplating and CMP in order to identify problem areas on the chip, optimize the integrated plating/polishing process, and define design rules.
- Co-optimization of electroplating/polishing module can save time, energy and chemicals.
- Characterization, modeling and optimization of new pads and slurries can reduce waste and improve performance.
- Abrasive-free polishing (AFP) must overcome problem of lack of clearing of large areas due to plating thickness variation. Optimized chip-scale plating is needed for adoption of AFP with the resulting elimination of solid abrasives in CMP wastes.

ESH Metrics

- Yield improvements of several % by identification of problem topography on chip
- Circuit performance of ~5-10% through model-based dummy fill may be possible

	Usage Reduction			Emission Reduction			
Goals/Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other Hazardous Wastes
Plating optimization	10%	10%	10%	N/A	N/A	N/A	10% reduction
Integrated plating/ polishing optimum	10%	10%	10%	N/A	N/A	N/A	10% reduction
Replace abrasive- slurries with AFP	comparable	50% reduction in rinse & clean	comparable	N/A	N/A	N/A	No solid particles in polishing effluent stream

Joint Optimization of Process/ESH Performance

Overall Methodology

- Motivation: performance & yield loss, pattern induced Cu thickness variation
- Goal: chip-scale prediction of Interconnect topography for any layouts

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

- Tae's Electroplating Model
 - Step height and array height are fitted by separate semi-empirical response surface models as a function of underlying layout parameters for conventional and super-filling electroplating processes.
 - Additional field thickness variation is modeled by considering the so-called average "surface area" computed over a region of size P on the chip. This parameter is conceptually based on a total "exposed" surface area accounting for sidewalls as well as the tops and bottoms of features.
- Problems
 - No direct physical relation between the models of step height and array height. Thus, the formulae are valid for a fixed nominal thickness.
 - Over-fitting problem (Each formula need several fitted parameters.)
 - Line width and line space are not generalized underlying layout parameters.
 - No clear physical meanings for the so-called average "surface area".
 - Field thickness is not a solid variable for a random layout.

¹ Tae Park, Tamba Tugbawa, Duane Boning, Chidi Chidambaram, Chris Borst and Gregg Shin, Journal of The Electrochemical Society, 2004, Vol. 151, No. 6, pp. C418–C430

Review: Hong's Non-Time-Step Model

Review: Hong's Non-Time-Step Model

- Hong's Electroplating Model
 - Model effective step-height and average copper thickness instead of step height, array height and average field thickness in Tae's model.
 - Effective step height and average copper thickness are fitted by separate semiempirical response surface models as a function of underlying layout parameters, effective line width and layout pattern density.
 - Long-range electroplating effect is attributed to copper ion depletion effect, which is decide by the deposited copper amount in the surrounding area.

$$T = T_{nom} \cdot F_{con}$$
$$F_{con} = (F_{dep})^{-\alpha}$$
$$F_{dep} = f(T, ECD \ Depletion \ Length)$$

α and ECD Depletion Length
 are model parameters for
 copper depletion effect

- Cons and Pros
 - Only need to model 2 variable instead of 3 variables.
 - No physical link between step-height and average copper thickness, over-fitting still is a problem.
 - Effective line width is more robust for random layout and incorporates some 2dimensional information.
 - Clear physical meanings for copper ion depletion effect and explain the longrange pattern dependence successfully.
 - Average copper thickness is a solid variable for a random layout . ² Hong Cai, Tae Park, and Duane Boning, ERC Annual Retreat 2004, Stanford, CA

Time-Step Model: Objective and Strategy

- Objective •
 - Build a time-step electroplating model which can simulate the chip-scale post- \geq electroplating topography with different nominal deposition thickness.
 - Keep the computation efficiency of Tae's and Hong's model and physically link \succ the step-height and array height (or average copper thickness) models, thus solve the over-fitting problem.
 - Follow the part of copper ion depletion effects in Hong's Model to explain the \geq long-range pattern dependence.
 - Comparable model accuracy although step height and array height (or average \geq copper thickness) have to be simulated at the same time.
 - Extendable for multi-level copper metallization and any random layout. \geq
- Strategy ٠
 - \succ Directly model the copper film growth on the top, the bottom and the side wall of the patterned features by using the fundamental layout parameters (no effective line width). Other variables, such as (effective) step-height, array height and average copper thickness could be easily derived.
 - Use straight line segments to simplify the details of the topography. \geq
 - The growth rate on the top, the bottom and the sidewall is determined by the \geq surface coverage of the organic additives in the electroplating liquid and the effective local copper ion concentration.
 - The effective local ion concentration could be derived by incorporating copper \geq ion depletion effect. 8

Time-Step Model: Feature-scale Models

West and Cale

```
Surface kinetics of the accelerator

\frac{d(A\theta_{acc})}{dt} = k_1 A (\theta_{acc} - \theta_{acc,eq})
\frac{d\theta_{acc}}{dt} = \frac{i\Omega}{nF} k_2 \kappa \theta_{acc} - k_1 A (\theta_{acc} - \theta_{acc,eq})
Surface kinetics of the suppressor

\frac{d\theta_{sup}}{dt} = -k_3 (\theta_{sup} - K (1 - \theta_{sup}))
K = 30 \exp(-7\sqrt{\theta_{acc}})
Local current density
```

$$i = I(1 - \theta_{sup})$$

<u>Moffat</u>

Local interface current density

$$i = i_0 \left(1 - \frac{i}{i_L} \right) \exp\left(-\frac{\alpha F}{RT} \eta\right)$$
$$i(\theta) = \left(0.4726\theta + 0.0374\right) \exp\left(-\frac{\left(0.5 + 0.25\theta\right)F}{RT} \eta\right)$$

Growth rate

$$v(\theta) = A + B\theta$$
$$\frac{d\theta}{dt} = \frac{i\Omega}{2F}\kappa\theta$$

9

Time-Step Model: Implementation

A Schematic of the Approximate Geometry

for a Simple Model

⁴ D. Josell, D. Wheeler, W. H. Huber, and etc. J.E.S. , 2001, Vol. 148, No. 12, pp. C418–C430 A Simple Geometrical Model :

- Based on CEAC Model
- Straight Vertical and Horizontal Lines
- Local Growth Rate
- Horizontal and Vertical Displacement

Growth rate

$$v = A \left(1 - \theta_{\sup} + k \theta_{acc} \right) F_1 F_2$$

 F_1 : Inner-feature depletion factor F_2 : Inter-feature depletion factor

Coverage of accelerator and suppressor on the top, side and bottom of the trench is calculated by the method used by Cale

Assumption:

- Ignore additive depletion
- Consider Cu ion inner-feature and inter-feature depletion effect
- Accelerator dominant
- Straight approximate geometry
- Ignore negative step height

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

10

Time-Step Model: Flowchart

¹¹

Time-Step Model: Simulation Results

profiler scans in patterned areas (blue) and the corresponding simulation topography (yellow for lower area and red for upper area

Time-Step Model: Simulation Results

Chip-scale Topography Simulation (Thickness in µm)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

13

Industrial Collaborations & Technology Transfer

- Praesagus, Inc. layout interface data, oxide thickness, HRP and e-test
- Magna Chip, Inc. experiments, measurement, financial support
- Neopad CMP pad experiments
- Philips Analytical copper thickness measurement

Future Plans

- Finalize the time-step electroplating model and extend the model in multilevel copper metallization case.
- Improve the physics-base CMP model and generalize it in the multi-level copper metallization.
- Integrate the time-step electroplating and CMP models.
- Develop optimization methods for coupled plating/CMP process optimization that minimize process thickness, process time, and consumable usage.

Conclusions

- A physics-based time-step copper electroplating model is developed to accurately simulate the post-electroplating topographical evolution.
- With a limited set of parameters, the simulation errors of envelope and step-height could be reduced to 10-20 nm.
- The new framework could be seamlessly integrated with our chip-scale CMP model and extended to multi-level copper metallization case. 14 <u>NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing</u>

Modeling and Physical Understanding of STI CMP Process

Daniel Truque – Ph.D. Candidate, EECS Xiaolin Xie – Ph.D. Candidate, Physics Prof. Duane Boning, EECS

Microsystems Technology Laboratories Massachusetts Institute of Technology

Thrust A: Back-End Processing Subtasks A-4-1 ERC Annual Review, February 2005

Project Objective

- Physical understanding of STI CMP process
- Improve die-level CMP model
- Better control and optimize STI CMP

Optimization of Process/ESH Performance

Roadmap of Research on STI CMP

- Recent Work
 - Simulation of wafer edge roll-off effect
 - Modeling and simulation of endpoint detection of STI CMP (with Sandia, Rohm & Haas, IMEC)
 - Nanotopography impact study (with Infineon, Siltronic)
 - Pad planarization performance modeling (with JSR)

• In Progress

- Data analysis of nanotopography experiment on patterned wafers (with Infineon, Siltronics)
- Physical understanding and modeling of ceria-based slurry and modeling of endpoint signal (with Rohm & Haas, IMEC)
- Study the relationship between pad properties and CMP performance
- Model improvement

Edge Roll-Off Effect

Model of CMP with Ceria-Based Slurry

• An empirical model for ceria slurry

$$K = K(t)\frac{\gamma + 1/\rho}{\gamma + 1}$$

- K(t) is determined by blanket polishing experiment
- γ is a model parameter, which adjusts the pattern density contribution

Simulation of Endpoint Signal

Identify Nanotopography Impact

- A blanket CMP DOE using 4 CMP processes, 3 wafer finishes, and 2 polishing stages
- Compute the correlation between material removal map and nanotopography map for each case

Modeling of Nanotopography Impact

- Contact wear model is used to model the nanotopography impact
- Modeling works well for all processes except the fixabrasive process
- Nanotopography impact is less significant for smoother initial wafer surface

Pad Planarization Performance Modeling

- **Goal** -- Understand how pad parameters, such as stiffness, pore size and distribution, relate to pad performance as captured by the model parameters
- Observations
 - Conventional pad polishes faster
 - but at the expense of possible overpolishing in lower pattern density areas
 - JSR pad exhibits lower pattern dependency
 - a smaller spread in the times required to planarize 10% to 90% structures

Future Plans

- Data analysis of nanotopography experiment on patterned wafers
- Physical understanding and modeling of ceria-based slurry
- Modeling of friction endpoint signal
- Develop a DOE to study the relationship between the model parameters (*K, PL, hc*) to pad parameters (pore size, density, etc)

Industrial Collaborations

- Rohm & Haas Materials
- IMEC
- Siltronic AG
- Infineon Technologies
- JSR
- NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing

Conclusions

- Edge roll-off could be reduced with good combination of tool parameters
- Nanotopography impacts identified in blanket wafer experiment and is modeled reasonably well by contact wear model
- Friction model is improved and in reasonable agreement with experiment data of CMP processes using ceria-based model

Characterizing Copper – Hydrogen Peroxide Film Growth and Dissolution Kinetics for Application in Multi-Step Chemical Mechanical Planarization Models

(Subtask A-4-2)

D. DeNardis, D. Rosales – Yeomans, and A. Philipossian (University. of Arizona, Tucson, AZ, USA)

L. Borucki

(Intelligent Planar, Mesa, AZ, USA)

Copper CMP

<u>Two – Step Removal Mechanism:</u>

$Cu + OX \xrightarrow{k_1} CuOX^* \xrightarrow{k_2} CuOX$

* Indicates surface species

Separation of 'C' and 'M' in CMP

Passive Film Formation

Mechanical Removal

- If k₁ and k₃ can be experimentally determined *a priori*, k₂ comprises mechanical processes only and can be extracted from CMP experiments
- The chemical and mechanical contributions can be quantified separately

In this study, characteristics of Steps 1 and 3 are investigated

Rate of oxide growth = (volume of oxide per cation) (# cations per area) (p)

Oxidation Rates

Copper Oxide Dissolution Profiles

Dissolution Process

$$RL_{(aq)} + CuO_{(s)} \rightarrow RX_{(s)} + Cu(L)_{i}^{2+}_{(aq)}$$
$$A_{(aq)} + B_{(s)} \rightarrow C_{(s)} + P_{(aq)}$$

- A soft byproduct film was observed on wafer surface
- Film was present after long times
- Controlling Mechanisms
 - Surface reaction
 - Linear profile
 - Diffusion through BL
 - Reported that profiles are not a function of stirring speed
 - Diffusion through byproduct

Model Development

QSS Assumption:

Diffusion of A through the byproduct layer is fast compared to dx/dt

Model Comparison

T (°C)	1/τ (S ⁻¹)	τ (S)	D C _{As} (mol cm ⁻¹ s ⁻¹)
25	2.30E-04	4.35E+03	2.63E-17
40	9.74E-04	1.03E+03	1.12E-16
60	9.02E-03	1.11E+02	1.03E-15

T⁻¹ (K⁻¹)

Model Parameters:

Ea = 86.9 kJ mol⁻¹

$$A = 4.12 \times 10^{-2} \text{ mol cm}^{-1} \text{ s}^{-1}$$

- A 3 step RR mechanism has been developed which separates chemical and mechanical contributions to removal
- Oxidation is faster than dissolution for thicknesses of interest
- With Steps 1 and 3 characterized, the only parameters that need to be extracted from RR data are those associated with Step 2 (mechanical removal)
- Oxidation model suggests that passivation layers formed during CMP are 2 to 6 A thick to facilitate removal rates on the order of 1000 – 9000 A min⁻¹
- The novel method outlined here for separately determining chemical contributions to the CMP process is crucial in slurry development and commercial slurry evaluation

Study of Inhibition Characteristics of Slurry Additives in Copper CMP Using Force Spectroscopy

(Subtask A-4-2)

H. Lee, Y. Zhuang and A. Philipossian (University of Arizona, Tucson, AZ, USA)

S. V. Babu, U. Patri and Y. Hong (Clarkson University, Potsdam, NY, USA)

L. Borucki (Intelligent Planar, Mesa, AZ, USA)

L. Economikos (IBM Corporation, Hopewell Junction, NY, USA)

M. Goldstein (Intel Corporation, Santa Clara, CA, USA)

Motivation and Goal

- Selection of an appropriate corrosion inhibitor is difficult as commonly used corrosion protective organics often produce unavoidable debris, wafer-level scratches, and defects during polishing.*
- Formation of BTA-copper complex film results in significantly high interfacial friction causing delamination problems in CMP. Surfactants, on the other hand, due to their inherent characteristics are known for tribological benefits.
- Determine whether spectral analysis based on raw shear force data obtained during polishing can be used to elucidate the adsorption, lubrication and inhibition characteristics of additives in slurries in CMP.

^{*}Y. Hong, D. Roy & S. Babu. Electrochemical and Solid-State Letters, 8 (11) G297-G300 (2005).

Experimental Conditions

Experimental Apparatus

Fujikoshi Machinery Corporation turntable, University of Arizona conditioner and friction table, and robotics, and Ebara Technologies head

– Slurry

- Reference slurry (3 weight percent fumed silica + 1 weight percent glycine + 5 weight percent H₂O₂ at pH = 4)
- Ref. + 3 mM BTA at pH = 4
- Ref. + 3 mM ADS at pH = 4
- 200 ml/min
- Pad
 - Rohm and Haas IC1000 K-groove pad

Wafer

200-mm blanket wafer with electroplated copper film (15,000 A) on Ta on SiO₂ on Si

Polishing

- Polishing pressure 2 PSI
- Sliding velocity 0.31 & 0.93 m/s
- Polishing time 1 minute

Pad Conditioning

- In-situ conditioning
- 100 grit TBW perforated diamond disc rotating at 30 RPM and sweeping at 20 times/min
- Conditioning force 5 lbf

Experimental Results

Adsorption Characteristics

Complete Coverage and Closed Packed Structure

Non-Linear Structure

Interaction Zone

Linear molecules like ADS

Strong cohesive bonding to resist shear forces

Dynamics of ADS Adsorption in CMP

Viscous Component of COF

- Increasing sliding velocity increases COF for 'Reference' & ADS containing slurry.
- Increasing sliding velocity decreases COF for BTA containing slurry.

$$\mu_{visc} \approx 0.9 (\mu_o V (1 - v^2) / E)^{0.36} R^{-0.19} \lambda^{-0.17}$$
$$\mu_{visc} \propto \mu_o V / E^{0.36}$$

L. Borucki, A. Philipossian and Y. Zhuang, "Physics and Modeling of Fundamental CMP Phenomena", 22nd International VLSI Multilevel Interconnection Conference Proceedings, 175-180 (2005).

Raw Shear Force Data

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Time (msec)

Time (msec)

Time (msec)

Variance of Shear Force

Shear Force Spectral Analysis

Conclusions

- The inhibition characteristics of ADS are superior to that of BTA
- COF and temperature are lowest with ADS-containing slurry
- Stick-slip phenomena are lowest with ADS-containing slurry
- Dynamics of adsorption in CMP and formation of nanolubrication layer explain the increase in COF with increasing sliding velocity
- Spectral analysis illustrates the emergence of high intensity peak in BTA containing slurry at lower velocity - an effect exhibited due to high variance of the shear force

Experimental and Theoretical Investigation of Slurry Chemical and Mechanical Characteristics in Copper CMP

(Subtask A-4-2)

Y. Zhuang, R. Zhuang and A. Philipossian University of Arizona, Tucson, AZ USA

M. Lacy and C. Spiro Cabot Microelectronics Corporation, Aurora, IL USA

> L. Borucki Intelligent Planar, Mesa, AZ USA

Objectives

- Investigate the tribological, thermal and kinetic attributes of two novel Cabot Microelectronics Corporation copper CMP slurries under different slurry flow rates
- Simulate wafer surface reaction temperature, chemical and mechanical rate constants, and chemical and mechanical dominance for two novel Cabot Microelectronics Corporation copper CMP slurries under different slurry flow rates

Experimental Conditions

– Polisher

- Fujikoshi Machinery Corporation turntable
- University of Arizona conditioner and friction table, and robotics
- Ebara Technologies head

– Slurry

- iCue 600Y75
- iCue EP-C7092
- 120 & 200 ml/min

– Pad

Rohm and Haas IC1000 K-groove pad

– Wafer

 200-mm blanket wafer with electroplated copper film

Polishing

•

٠

- Polishing pressure = 1, 2 & 3 PSI
- Sliding velocity = 0.3, 0.75 & 1.2 m/s
- Polishing time = 1 minute

Pad Conditioning

- In-situ pad conditioning
- Mitsubishi Materials Corporation 100-grit Mosaic diamond disc rotating at 30 RPM and sweeping at 20 times/min
 - Conditioning force 6.28 lbf

Coefficient of Friction

120 ml per minute

200 ml per minute

Experimental Removal Rate

120 ml per minute

Chemical-Mechanical Rate Model

See J. Tribology 127(3), pp. 639-651 for details

Two step model (oxidation and mechanical removal):

$$RR = \frac{M_{w}}{\rho} \frac{k_{2}k_{1}}{k_{2} + k_{1}}$$

$$k_{1} = Ae^{-E/kT}$$
Chemical Rate
$$k_{2} = c_{p}\mu_{k}pV$$
Mechanical Rate

Mean reaction temperature model:

$$\overline{T} \approx \overline{T}_p + \frac{\beta}{V^{1/2+e}} \mu_k p V$$

Leading edge temperature T_p

A, c_p , β and *e* are fitting parameters. A should be chemistry-specific, β and *e* are predicted by theory to depend on the pad thermal and mechanical properties and on conditioning.

Simulated Removal Rate iCue 600Y75

Simulated Removal Rate iCue EP-C7092

Simulated Chemical Rate Constant K₁

120 ml per minute

Simulated Mechanical Rate Constant K₂

120 ml per minute

Simulated K₁/K₂

120 ml per minute

Conclusions

- The tribological study shows a transition for the iCue 600Y75 slurry, suggesting a pressure or lubrication layer dependence of the slurry viscosity. The dominant tribological mechanism for the iCue EP-C7092 slurry is boundary lubrication.
- Both the iCue 600Y75 and iCue EP-C7092 slurries exhibit highly non-Prestonian removal rate behavior, which is successfully captured by the two step chemical-mechanical rate model.
- Simulated chemical rate constants for the iCue 600Y75 and iCue EP-C7092 slurries are similar, suggesting that these two slurries have similar oxidation chemistry during polishing.
- Simulated mechanical rate constants for the iCue 600Y75 slurry are higher than those of the iCue EP-C7092 slurry at 200 ml/min, suggesting the iCue 600Y75 slurry is more mechanically active under this slurry flow rate.
- For both the iCue 600Y75 and iCue EP-C7092 slurries, chemical and mechanical actions are relatively balanced in the studied polishing region. Simulated k₁/k₂ for the iCue 600Y75 slurry are lower than those of the iCue EP-C7092 slurry at 200 ml/min due to its larger mechanical rate constants.

Fundamental Pad Characterization and Modeling: Design and Evaluation of Novel Pad Grooves for Copper CMP Optimization

Subtask A-5-1

D. Rosales-Yeomans, D. DeNardis and A. Philipossian (University of Arizona, Tucson, AZ, USA)

> L. Borucki (Intelligent Planar, Mesa, AZ, USA)

Driving Force

Grooved Pads in CMP

Novel Pads Logarithmic-Spiral Grooves

Basic Idea ...

Positive Log. and Spiral Grooves Transport fresh slurry into the pad

wafer interface

Negative Log. and Spiral Grooves Discharge spent slurry and by – products away from the pad – wafer interface Floral groove design

Wafer and pad (i.e grooves) rotate in the counter-clockwise direction

3 Step Model

$$k_1 = \frac{\rho_{ox}}{MW_{ox}} N\Omega f \exp\left(\frac{-W}{kT}\right) \exp\left(\frac{qa}{2kTx}V\right)$$

$$RR = \frac{M_{w}}{\rho} \frac{k_{1}(k_{2} + k_{3})}{k_{1} + k_{2} + k_{3}}$$

$$k_2 = c_p \mu_k p V$$

Dissolution rate (k₃) was found to be negligible for Fujimi PL-7102 system at the *pressure* and *velocity* conditions used in this study

However it becomes more important as *pressure x velocity* approaches zero

Experimental Conditions

• Constants:

- Conditioning
 - 100 grit diamond disc (TBW)
 - 30 min with UPW at 30 rpm disc speed and 20 per min sweep frequency
- Break-in
 - 5 dummy Discs (Cu) with Fujimi PL-7102
- Slurry
 - <u>Fujimi PL-7102</u>
 - 220 cc per minute
- Wafers
 - 200-mm in diameter
 - 15000 A PVD Cu on 1000 Å Ta on 1000 Å SiO $_2$ on silicon
- Pad Material
 - Rohm & Haas IC-1000

- Variables:
 - Relative pad-wafer velocity (m/s)
 - <u>0.30</u>
 - <u>0.75</u>
 - <u>1.20</u>
 - Wafer pressure (PSI)
 - <u>1.0</u> (6894 Pa)
 - <u>1.5</u> (10300 Pa)
 - <u>2.0</u> (13780 Pa)
 - <u>2.5</u> (17200 Pa)
 - Pad surface texture
 - K Groove
 - Logarithmic (+) Spiral (+)
 - Logarithmic (+) Spiral (-)
 - Logarithmic (-) Spiral (-)
 - Logarithmic (-) Spiral (+)
 - Floral

Removal Rate Results Logarithmic and Spiral Grooves

Temperature Results Logarithmic and Spiral Grooves

Summary of Frictional Data

Wilcoxon Signed-Rank Test Results

Pad Type	Removal Rate	Avg. COF	Avg. Leading Pad Temp.	% Confidence
Log (-) Spiral (+)	1	1	1	95.00
Log (-) Spiral (-)	2	2	2	95.00
Log (+) Spiral (+)	2	1	2	95.00
Log (+) Spiral (-)	3	2	3	95.00
K Groove	3	3	3	95.00
Floral	3	3	3	95.00

Rank of 1 represents the highest Rank

Relative Values of k₁ and k₂ for Log and Spiral Grooves

11
Conclusions

- In order to achieve an optimum process, different types of pad groove design were analyzed and compared to a commercial pad to establish if the flow of slurry to the wafer-pad interface could be effectively controlled during copper CMP.
- When the novel pads where compared, the effect of the logarithmic groove seems to dominate that of the spiral groove. For a fixed spiral groove direction, changing the direction of the logarithmic grooves affects removal rate significantly.
- After statistical analysis, Logarithmic (-) Spiral (+) shows higher removal rate, pad leading edge temperature and COF.
- Theoretical analysis of copper polish rates shows:
 - The 3 step model including the new expression to characterize the rate of oxide growth predicts very well the behavior of the removal rate for different types of pads used in copper CMP. The RMS falls in the range of 400 to 700 A/min in all cases.
 - The dissolution rate (i.e. k_3) does not play an important role for Fujimi PL-7102 under the pressure and velocity conditions evaluated in this study. However this third step will become more and more significant as pV approaches zero.
 - The relative values of k1 and k2 as a function of *pV* shows that the process is more limited by film removal through mechanical abrasion, especially at low values of *pV*. However, as pV increase this limitation is reduced and there is a transition to a more balanced process.

Fundamental Pad Characterization and Modeling: Effect of Slanted Groove Designs on Copper CMP

Subtask A-5-2

D. Rosales-Yeomans, D. DeNardis and A. Philipossian (University of Arizona, Tucson, AZ, USA)

> L. Borucki (Intelligent Planar, Mesa, AZ, USA)

Driving Force

• Design and evaluation of novel pad grooves are critical in the development of an optimal CMP process in terms of slurry and pad consumption, as well as, uniform slurry flow under the wafer.

• Analyzing the role slanted grooves play in the effective transport of fresh slurry into and the discharged of used slurry and unwanted by-products from the wafer pad interface during copper CMP.

• Optimization of CMP consumables (pad and slurry) in order to reduce COO and achieve a more environmentally friendly process.

CMP Process

200 mm Polisher at the University of Arizona

Slanted Concentric Grooves

3 Step Model

$$k_1 = \frac{\rho_{ox}}{MW_{ox}} N\Omega f \exp\left(\frac{-W}{kT}\right) \exp\left(\frac{qa}{2kTx}V\right)$$

$$RR = \frac{M_{w}}{\rho} \frac{k_{1}(k_{2} + k_{3})}{k_{1} + k_{2} + k_{3}}$$

$$k_2 = c_p \mu_k p V$$

Dissolution rate (k₃) was found to be negligible for Fujimi PL-7102 system at the *pressure* and *velocity* conditions used in this study

However it becomes more important as *pressure x velocity* approaches zero

Experimental Conditions

- Constants:
 - Conditioning
 - <u>100 grit diamond disc</u>
 - 30 min with UPW at 30 RPM disc speed and 20 per min sweep frequency
 - Break-in
 - 5 copper discs with Fujimi PL 7102
 - Slurry
 - Fujimi PL 7102
 - 220 cc per minute
 - Wafers
 - <u>200 mm in diameter</u>
 - 1,500 nm PVD copper on 100 nm Ta on 100 nm SiO2 on Si
 - Pad surface texture
 - <u>Concentrically Grooved (Pitch =</u> <u>Depth = 1000 μm ; Width = 500 μm)</u>

- Variables:
 - Relative pad-wafer velocity (m/s)
 - <u>0.30</u>
 - <u>0.75</u>
 - <u>1.20</u>
 - Wafer pressure (PSI)
 - <u>1.0</u> (6,900 Pa)
 - <u>2.0</u> (13,800 Pa)
 - 3.0 (20,700 Pa)
 - Pad surface texture
 - Plus and Minus 20 degrees
 - Plus and minus 30 degrees
 - <u>Zero</u>
 - Flat

Removal Rate Results Slanted Grooves

Temperature Results Slanted Grooves

Summary of Frictional Data

Wilcoxon Signed-Rank Test Results

Pad Type	Removal Rate	Avg. COF	Avg. Leading Pad Temp.	% Confidence	
Minus 30°	3	2	3	95.00	
Minus 20°	2	1	2	95.00	
Zero	2	3	2	95.00	
Plus 20°	1	1	1	95.00	
Plus 30°	3	3	3	95.00	
Flat	4	4	3	95.00	

Rank of 1 represents the highest Rank

Relative Values of k₁ and k₂ for Log and Spiral Grooves

Conclusions

- Slanted grooves (positive and negative) can be used to modify the removal rate behavior without significantly affecting COF
- Experimental results indicate that slanting the grooves at 20° regardless of the direction results in higher removal rates during copper CMP.
 - After statistical analysis, Plus 20^o shows higher removal rate, pad leading edge temperature and slightly higher average COF. Suggesting a possible path to change the balance between slurry consumption and pad wear.
 - When the degree of slant is 30, the grooves apparently give-up and collapse producing lower removal rates.
- Theoretical analysis of copper polish rates shows:
 - The 3 step model including the new expression for the oxide growth rate predicts very well the behavior of the removal rate for the slanted grooves pads. The RMS falls in the range of 480 to 595 A/min for all grooved pads, and 162 A/min in the case of the Flat pad.
 - The dissolution rate (i.e. k_3) does not play an important role ($k_3 << k_1$ and $k_3 << k_2$) for this system.
 - The relative values of k1 and k2 as a function of pV for all grooved pads shows that the process is more limited by film removal through mechanical abrasion, especially at low values of pV. However, as pV increase this limitation is reduced and there is a transition to a more balanced process.
 - The model predicts that as pV increase to values higher than tested the removal rate will saturate in terms of mechanical abrasion (i.e. the rate of mechanical abrasion will approach and exceed the rate of film growth).

Alternative Planarization Technologies - Electrochemical Mechanical Planarization (ECMP) of Copper

Task ID : A-6-1

Srini Raghavan (PI)

Graduate students: Viral Lowalekar Ashok Muthukumaran

Department of Materials Science and Engineering The University of Arizona

ESH Metrics for Task A-6

Basis of comparison:

- Conventional slurry based Copper CMP
 - Requires slurries with higher solid content
 - Higher polishing pressure
 - Higher polish time during bulk copper removal

> Manufacturing Metrics:

The use of ECMP will reduce the polish time, polishing pressure and the amount of waste generated by a typical slurry based CMP

ESH Metrics:

	Usage Reduction		Waste Reduction		
Goals	Chemicals	Abrasives	Solid	Liquid	
Using ECMP	N/A	80% reduction	<0.01%	N/A	

ECMP for Bulk Copper Removal

➤Wafer is anodically biased during polishing in a solution at very low (~0.5 psi) pressure

> Passivating agent/corrosion inhibitor is added to protect low lying areas while higher areas are polished.

> Inhibitors must be stable at anodic overpotentials; efficiency of the most commonly used inhibitor BTA decreases with applied anodic potential

Objective

> To develop chemical systems suitable for ECMP of copper through electrochemical investigations. Special attention has been paid to the identification of inhibitors that can function effectively under anodic potential conditions used in ECMP.

Accomplishments During the Current Contract Year

- Developed oxalic acid based chemical system containing a redox inhibitor (TSA) that is suitable for copper ECMP.
- Characterized the mechanism of inhibition by electrochemical investigations.

Setup for Electro Chemical Mechanical Polishing

ECMP of Copper in Oxalic Acid System - Comparison of TSA and BTA as Inhibitor

- ➤ 0.1 M Oxalic + 0.01 M TSA + 1% SiO₂
- Increase in overpotential increases Cu removal rates.
- Unlike BTA, no static removal seen at higher overpotentials.
- 0.1 M Oxalic + 0.001M BTA + 1%SiO₂
 Higher polishing and static removal rates with higher overpotential.

Effect of Current Density on Copper Removal in Oxalic Acid - TSA System - Galvanostatic Study

ECMP of Copper in Oxalic Acid System

- Applied current densities of 0.35, 1.7 and 2.1mA/cm² correspond to overpotentials of 300, 650 and 750 mV, respectively.
- Removal rate increases with current density but is more than that calculated from applied charge
- Under OCP conditions, the removal rate during polishing in 0.3 M oxalic acid is 6 Å/min.
- Estimated removal rate was calculated from current vs. time profiles.

- QCM is an extremely sensitive sensor capable of measuring mass change in ng/cm² range.
 - Mass decrease indicates dissolution
 - Mass increase indicates surface layer formation/inhibition
- High dissolution rate of copper (5600 Å/min) in
 0.3 M oxalic acid without inhibitor
- Addition of 0.01 M TSA <u>inhibits</u> copper dissolution at an anodic overpotential (η) of 750 mV.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

QCM Results

Cyclic Voltammetry Studies on TSA

- ≻ 0.01 M TSA (pH 4)
- CV carried out under N₂ atmosphere with <u>Pt as working electrode</u>.
- Potential scanned: OCP to 1.2 vs. OCP
- ≻ Scan rate of 10 mV/sec.
- TSA get oxidized at ~ 800 mV vs. SCE.

Effect of Potential on Copper Dissolution - QCM Studies

- > Copper dissolution increases with overpotential.
- > Dissolution rate of 1800 Å/min at $\eta = 750$ mV.
- ▶ Increase in mass recorded for all overpotentials in presence of 0.01 M TSA.

Cyclic Voltammetry and QCM Studies in Cu/TSA System (No Oxalic Acid)

* Mass change was recorded simultaneously with the potential sweep.

Proposed Inhibition Mechanism for BTA and TSA

With BTA, Small η With BTA, Large η

Future Directions

- Continue work with redox inhibitors and study rate planarity relationship
- Investigate the feasibility of removal of barrier layers (Ta, TaN, Ru) using ECMP technique.
 - ✤ 1:1 selectivity between Cu and barrier layer

Subtask A9 Copper Planarization for Integrated Circuit Manufacturing

Principal Investigator: Steve Beaudoin, Chemical Engineering, Purdue University

Graduate Student: Bum Soo Kim, Chemical Engineering, Purdue University Caitlin Kilroy, Chemical Engineering, Purdue University

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

ESH Impact

- Optimization of Cu CMP Protocols
 - Minimize cleaning load
 - Minimize rework
 - Optimize polish rates and consumables use
- Metrics
 - Basis of Comparison
 - ✓ Existing Cu CMP processes
 - Manufacturing Metrics
 - Validated polishing model provides predictive tool to identify promising configurations

• ESH Metrics

Goal <i>s/</i> Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other Hazardous Wastes
Optimal post							
CMP cleaning	up to 30%	up to 15%	up to 15%	N/A	N/A	N/A	N/A

Interpretation: Pad Elastic Modulus Studies

Measured Pad Moduli

Measured Elastic Modulus in Tension 700 Dry Elastic Modulus (MPa) 600 DI water (15 min) DI water (24 h) Praxair Cu (15 m) Praxair Cu (1 h) 500 Praxair Cu (12 h) Praxair Cu (24 h) 400 300 200 100 0 IC1000 (k-Praxair (non-Praxair Praxair groove) groove) (grooved) (grooved, polished) Pad type

Reproducibility: Elastic Modulus in Tension

Measured Elastic Modulus in Compression

Reproducibility: Elastic Modulus in Compression

Interpretation: Pad Behavior

- Asperity layer and bulk pad studied
 - Effects of cyclical loading during CMP, soaking in slurries, and soaking in aqueous solutions studied
 - Asperity layer
 - \checkmark Pad asperities undergo minor changes
 - Conditioning/polishing wear may increase effective modulus slightly
 - Bulk pad
 - ✓ Core region of pad becomes softer (lower modulus) with increased exposure to slurry, aqueous solution, or polishing
 - \checkmark Polishing accelerates reduction in modulus
- Implications
 - Pad conditioning may influence load/asperity, but may not influence mechanical properties of individual asperities
 - Pad break-in periods may reflect combined evolution of pad bulk modulus and pad asperity contact area

Ongoing Work, Interactions, Acknowledgements

- Ongoing work
 - Studies of electrochemistry on Cu surfaces during CMP
 - Rotating disk electrode
 - Impedance spectroscopy
 - Higher resolution at shorter time scales
 - Describe local electric field effects during CMP
 - Measure mechanical properties of surface of wafer
 - Copper and Black Diamond
 - Roughness and mechanical properties
- Industrial Collaboration
 - Praxair Microelectronics, Rohm and Haas
- Acknowledgments
 - NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
 - State of Indiana 21st Century Fund
 - Praxair Electronics
Thrust B1:

Surface Chemistry of High-k Barrier Layer Formation

Adam Thorsness, Shariq Siddiqui, and Anthony Muscat

Department of Chemical and Environmental Engineering University of Arizona, Tucson, AZ 85721 agt@u.arizona.edu

NSF/SRC ERC EBSM Annual Review Feb. 2006

- Motivation and ESH Impact
- Research Cluster Apparatus and Process Flow
- UV-Cl₂ Process to create a Cl-terminated Si(100) surface from SiH and SiH₂ terminated surfaces.
- Water reactivity with activated CI-terminated Si(100) surface
- Detailed surface analysis of the silicon oxides resulting from H₂O(g) + SiCl(a) reaction.

Gate-Last MOSFET Process with Additive Patterning

Clean, grow field oxide, pattern device area (Mask 1), ion implant (M2), deposit spacer oxide, pattern gate area (M3)

Selectively deposit barrier layer, high-k seed layer, and high-k dielectric layer

Deposit gate metal, pattern (M4), deposit metal isolation dielectric, pattern (M5), deposit metal 1 layer, pattern (M6)

- Gas phase processing requires less chemical usage than liquid processes by several orders of magnitude.
- Integrate process into a single vacuum cluster tool.
- Low temperature method of forming a single silicon oxide layer means lower energy usage.

Research Cluster Apparatus

Example of Controlled Starting Surface for ALD

- Focus of this presentation
 - UV/Cl₂ to create a CI-terminated Si surface
 - H₂O exposure to create SiOH groups or a silicon oxide surface
- Advantages
 - Low temperature process
 - Self-limiting/Controllable formation a uniform oxide and OH-termination

A UV/Cl₂ Process Replaced All Surface H With Cl Atoms

Si Substrate

- H₂ desorbs from SiH and SiH₂ surface species after a dilute HF clean from an Si(100) surface
- H₂ desorbed from Si(100) surface exposed to Dark/Cl₂ process
 - T = 300 K, 10% Cl₂ at 100 Torr, 5 min
- No H₂ desorbed after UV/Cl₂ process indicating that all H atoms were replaced by Cl atoms.
 - *T* = 300 K, 10% Cl₂ at 10 Torr, 40 sec

Only Silicon Monochloride on the Surface

- No SiCl₂ or SiCl₃
- Cl 2p shift between SiCl
- and SiCl₂ is 1 eV
- Symmetric decrease in the CI 2p Peak

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

CI CI

Flash-UV-Cl₂ Exposure

- 0 1 second of UV exposure results in H₂ desorption.
- Need at least 2 seconds of UV to displace all Si-H.

Process: 10%Cl2 in N2 gas at 10 Torr and 25°C for 10 seconds.

More O on a Cl/Si(100) Activated Surface

- H₂O exposure of non-activated surface results in only 0.2 ML O added.
- Cl activates surface for reaction with H₂O gas.
 - 0.83 ML 1.2 ML added

Н

Ô

No Increase in O After CI is Removed

- O addition in the short term is determined by the presence of CI on the surface.
- No increase in O after Cl is removed.

Addition of O and Removal of Cl

• 1.5 O added to 1 CI removed

Change in O and Cl Coverage

- Stable in atmosphere
 - Only a 0.2 ML increase in O after 14 hours.

Oxygen in Si Backbonds and Different Suboxides Created

¹³

Summary/Conclusions

- Activated surface with halogen for low T interface growth
 - Obtained CI-terminated Si surface from a UV-Cl₂ process
 - CI interacted with all Si-H and SiH_2 on the Si(100) surface.
 - Only monochloride formed on the Si(100) surface during UV-Cl₂ process.
 - No H remaining on surface.
- Deposited single layer of silicon oxide
 - O atoms detected on the surface after water exposure stable up to 800 K. (no decrease in O coverage)
 - Ratio of 1.5 O atoms were added for every 1 Cl removed.
 - O in the Si backbonds
 - SiO_x where x = 1 4 exist after water exposure.

Ο

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Future Plans

- Investigate parameters for manipulating Si⁺¹ and SiO₂ (Si⁺⁴) formation.
 - More ideal CI-terminated surface combined with low H₂O partial pressures.
- Deposit high-k on thin oxide and perform electrical (CV) measurements on MIS capacitors.
- Activate high mobility substrates

Acknowledgments

Improvement of NBTI of High-k by Incorporation of Fluorine

Kang-ill Seo

Raghavasimhan Sreenivasan Paul. C. McIntyre

Materials Science & Engineering, Stanford University

Krishna. C. Saraswat

Electrical Engineering, Stanford University

Task B-2

Selective Surface Preparation and Templated Atomic Layer Film Deposition: Novel Processes for Environmentally Benign Transistor Gate Stack Manufacturing

NBTI in MOS devices

What is Negative Bias
Temperature Instability
(NBTI) ?

→ Generation of interface traps ($\triangle D_{it}$) and positive charges ($\triangle Q_{f}$) under negative gate bias especially in elevated temperature.

→ V_T ↑, I_{off} ↑, I_{Dsat} ↓, g_m ↓ in p-channel MOS with time

$$\triangle V_{T} = q (\triangle Q_{it} + \triangle Q_{f}) / C_{ox}$$

R-D model for $\triangle D_{it} \& \triangle N_P$ in SiO₂/Si(001)

- Reaction; $Si_3 \equiv Si-H + Y \rightarrow Si_3 \equiv Si + O_3 \equiv Si^+ + X_{interface}$ H passivated defect D_{it} Q_f - Diffusion; $X_{interface} \leftrightarrow X_{bulk}$ - Y = (Si-O-Si + h⁺), (H₂O + h⁺), h⁺, H⁺
- X = Si-OH, H_3O^+ , H^+ , H_2

K. O. Jeppson and C. M. Svensson, *J. Appl. Phys.*, vol. 48, p 2004 (1977) D. K. Schroder and J. A. Babcock, *J. Appl. Phys.*, vol. 94, p 1 (2003)

Why "F" is attractive in high-k?

 "F" at the SiO₂/Si interface improves NBTI by forming Si-F (5.73 eV) bonds which are more stable against hot carrier stressing than Si-H bonds (3.18 eV).

(Peter J. Wright and Krishna C. Saraswat, IEEE Trans. Elect. Dev. Vol. 36, p 879, 1989, and many more reports....)

- However (from many previous reports),
 - "F" enhance boron penetration through SiO₂ from p-type poly-Si gate.
 - Excess "F" increases physical thickness of SiO₂.
- "F" in "high-k / metal gate" system ?
 - No boron penetration problem.
 - May not suffer from increasing thickness of high-k.

"F" profile engineering in HfO₂/SiO₂ Local UV-F₂ Full UV-F₂ Control UV-F₂ $HfO_2 = 5nm$ SiO₂=1.5nm HfO₂=1.5nm SiO₂ = 1.5nm SiO₂=1.5nm Si sub. Si sub. Si sub. HfO₂ HfO₂=5nm HfO₂=3.5nm =5nm HfO₂ + F HfO₂ + F \checkmark SiO₂ SiO₂ + F $SiO_2 + F$ Si sub. Si sub. Si sub. Pt 50nm gate electrode FGA (H₂/N₂, 400 °C, 30m)

Sample structure & TEM

➔ Amorphous HfO₂ Smooth interfaces

"F" incorporation in HfO₂/SiO₂ by UV-F₂

→ "F" is easily incorporated in HfO₂ even at R.T. (~12%) and surface F species (CF_x) are suppressed as temp. \uparrow

NBTI of SiO₂ vs. high-k(HfO₂/SiO₂)

→Larger C-V shift ($\triangle N_P$) in HfO₂/SiO₂ compared to SiO₂ after same stress, indicating oxide charge trap sites exist either in the HfO₂ bulk or at the HfO₂/SiO₂ interface. →HfO₂/SiO₂ with F shows a significant reduction in $\triangle V_{FB}$ compared to the control sample.

"F" effect on △D_{it}

→ From R-D model, $\Delta D_{it} \sim t^{\alpha}$

* $\Delta D_{it} = C E_{OX}^{s} \exp(-E_a/k_B T) t^{\alpha}$ ($\alpha = 0.25$ for ideal R-D)

* Shigeo Ogawa and Noboru Shiono, Physical Review B, vol. 51 p 4218, 1995

"F" effect on ΔN_P

→ $\Delta N_p \sim \log(t/t_o)^* \& \Delta N_p >> \Delta D_{it}$, implies that hole trapping in the oxide traps is the dominant mechanism for ΔN_P . (oxide defect) + h^+ → (oxide defect)⁺

* A. Shanware, et al, IEEE 41st Ann. Inter. Reliability and Phys. Symp., 2003

"F" SIMS profile of "Local UV-F₂"

Temperature dependent △N_P

 $\triangle N_{P}$ of the Local UV-F₂ are smaller than the Control in all temperatures measured. $\triangle N_{p} \sim \log(t/t_{o})$

→ ΔN_P of the Local UV-F₂ is similar to the Full UV-F₂, suggesting charge trapping sites primarily exist at HfO₂/SiO₂ interface.

Suggested Mechanism "F" Effects

*Bond Enthalpy (KJ/mole)

Si-H	299
Si-O	800
Si-F	553
Hf-H	?
Hf-O	802
Hf-F	650
Ti-H	205
Ti-O	672
Ti-F	569

*www.webelements.com J. A. Kerr, "CRC Handbook of chemistry and physics 1999-2000"

Conclusion

- Demonstrate that "F" incorporation reduces NBTI significantly in "high-*k*(HfO₂) / metal gate" system (<50%); △D_{it} ↓, △N_P ↓, and △V_{hys} ↓.
- Demonstrate engineering of "F" profile to segregate at HfO₂/SiO₂ and SiO₂/Si interfaces is effective in reducing NBTI without deteriorating leakage current.

Acknowledgements

• Prof. Yoshio Nishi and Prof. Baylor B. Triplett for helpful discussions on electrical data. Prof. Mike Kelly for helping XPS analysis.

• Funding: NSF/SRC Center for Environmentally Benign Semiconductor Manufacturing, MARCO Center for Materials Structures and Devices, INMP program (Stanford) Gate Stack Engineering by Atomic Layer Deposition

R. Sreenivasan¹, P.C. McIntyre¹, K.C. Saraswat²

¹ Department of Materials Science Eng., Stanford University
² Department of Electrical Eng., Stanford University

Thrust B, Project 2

Ultimate Goal

Our goal is to be able to fabricate the entire gate stack without exposure to the ambient. This process has the promise of preventing I.L growth during post processing.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Atomic Layer Deposition

Schematic of the ALD process

- Self-limiting growth
- Highly conformal, low defect thin films
- Very good step coverage
- Low temperature deposition
- Excellent control over film thickness
- Uniform thickness over large areas
- Good control of stoichiometry
- Abrupt interface to the substrate

(courtesy Hyoungsub Kim)

ALD Chamber Layout

ALD Process Parameters

	HfCl ₄	TDEAH
Substrate temp	300 °C	140°C
Bubbler temp	150 °C	65°C
Pulsing	1-60-1-60	1-50-1-50
Dep rate	0.5Å/cycle	0.75Å/cycle
Chamber wall	R.T	75°C
Oxidizer	H ₂ O	H ₂ O
N ₂ (carrier gas)	20 sccm	2.5 sccm
Process Pr	0.5 Torr	0.5 Torr

C-V Hysteresis

HfO₂ Characteristics

Comparable leakage currents were observed on MOSCAP structures on HfO₂ grown using HfCl₄ and TDEAH (EOT = 23Å)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Precursor Effect on V_{FB}

Plasma Enhanced ALD of TaN

Isopropylimido tris(ethylmethylamino) tantalum (IPTEMT) Plasma Gas Mixture: Ar(1000sccm) $/N_2$ (80sccm) $/H_2$ (5sccm)

Plasma RF Power: 780W

Process Pr: 1.5Torr

Substrate Temp: 250 - 400°C

Ta precursor: IPTEMT (liq at R.T)

Pulse Times: 10-50-2-50 sec

Growth Rate: 0.45Å/cyl

XPS Spectra

TaxNy deposited @ 400°C showed 35% [N] and 25% [O] in the asdeposited sample. Carbon impurities in the bulk of the film were below the detection limits of the XPS.

The Ta $4f_{5/2}$ and $4f_{7/2}$ located at 26.7 eV and 24.8 eV resp indicates the as-deposited film to be stoichiometric Ta₃N₅.

In-situ TEM Annealing

700°C 800°C 850°C

The Ta_xN_y film deposited on Si/SiO₂ surface crystallized completely at 850°C to form cubic TaN. The observed spot pattern is that of (100) Si substrate.

Stoichiometric TaN

DF image showing TaN crystals after 850°C vacuum anneal

Ta 4f peak shift consistent with the phase change from Ta_3N_5 to cubic TaN

Summary and Future Work

- We have successfully grown high quality HfO_2 thin films on silicon substrates using the ALD process. The electrical characteristics of the HfO_2 films grown using TDEAH are far superior to those obtained using the chlorides.
- We have also optimized a plasma enhanced ALD process to deposit Ta_xN_y at 400 °C which crystallized into stoichiometric cubic TaN when annealed in vacuum at 850°C.
- We are currently working on integrating the two different processes to fabricate capacitors with HfO2 dielectric and TaN metal gate.
- The ESH implications of the Hafnium and the Tantalum precursors have been analyzed.

Thrust B: Front End Processing

Task B2: Selective Surface Preparation and Templated Atomic Layer Film Deposition

Rong Chen, Junsic Hong, David W. Porter, Stacey F. Bent Department of Chemistry; Department of Chemical Engineering

Hyoungsub Kim, Raghavasimhan Sreenivasan, Paul C. McIntyre Department of Materials Science and Engineering

> Hemanth Jagannathan, Yoshio Nishi Department of Electrical Engineering

> > **Stanford University**

NSF/SRC EBSM ERC Review 2006-02-23

1

Area Selective ALD of Gate Stack

Self-aligned deposition process for gate dielectrics and gate metal
 Self-aligned deposition process for gate dielectrics and gate metals
 Avoid tuning etching for different high- κ gate dielectrics and gate metals

Area Selective CMOS Process

Conventional CMOS Process

Atomic Layer Deposition

- Layer saturation reactions form conformal film and excellent step-coverage.
- ALD process is based upon chemical reactions between the precursors and the film surface.
- Surface saturation controls deposition.
- Reactions depend on the specific reactive functional groups present at the surface.

Manipulate surface groups before deposition to control the ALD process.

Experimental Setup

Silicon wafer covered Bare silicon Α by deactivating agents wafer **ALD ALD** B precursor 2 precursor 1 ALD Reactor Sample characterization Pump

HfO₂ ALD Precursors:

- Hafnium chloride (HfCl₄) or hafnium alkylamido Hf(NMe₂)₄)
- Water

process temperature: 300°C for HfCl₄ and 250°C Hf(NMe₂)₄

Pt ALD Precursors:

- (Methylcyclopentadienyl)trimethyl platinum (MeCpPtMe₃)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

ĹΗ

Top View of ALD Reactor

Deactivating Agents on Oxide Surface

SAMs Formatiom through Vapor Phase Delivery

Preparation of SAMs by CVD

Experimental Condition:

Precursors (ODTS and water) Ts=170°C

Goals:

- Avoid solvent usage Environmental friendly
- Compatible to ALD process Easy scale up to wafers used in IC industry (CVD, vacuum systems)

Long reaction time are necessary for SAMs crystallization and complete deactivation

7

QCM Study of SAMs through Vapor Phase Delivery

Deactivating Agents Studied

Correlation between Deactivation & Hydrophobicity

QCM Study of FOTS through Vapor Phase Delivery

Fluorinated compounds exhibit higher hydrophobicity, which may block the water diffusion more efficiently.

crucial to control the amount of water to avoid multilayer formation

11

Deactivation of Ge and Si Semiconductors

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

12

Positive and Negative Pattern Transfers

Area-Selective ALD of HfO₂ by Negative Patterning

Area #1, Octadecyltrichlorosilane deactivated oxide surface; Area #2, non-deactivated Si-H surface SEM Image Hf Auger Mapping

Area-Selective ALD of Pt by Positive Patterning

Area #1, non-deactivated oxide surface; Area #2, 1-octadecene deactivated hydride surface SEM Image Pt Auger Mapping

Selective Adsorption and ALD on Other Surfaces

Initial Capacitor Structure and Characterization

Capacitor Cross-Section top electrode: Pt

Area-Selective ALD Capacitors

Capacitance (Farads)

Area-Selective ALD Capacitors

- SiO₂ deactivated with ODTS
- Area-selective ALD of HfO₂ and evaporated Pt electrode
- Al back-electrode deposition
- Interfaces: Si/Si:H/HfO₂/Pt

Interface property is poor

need activation step to achieve better interface property7

Summary

- Deactivation study on SiO₂ by siloxane-based SAMs
- Deactivation study on Ge-H and Si-H by 1alkenes/1-alkynes and alkanethiols
- Vapor phase SAMs formation and deactivation mechanism study
- Pattern transfer investigation by selective attachment and soft lithography
- Area selective ALD on other dielectrics/semiconductor, e.g. medium-k Si₃N₄/Si and high-k HfO₂/Si
- Electrical characterization on Capacitors fabricated by area-selective ALD

Future Work

- Surface activation and cleaning strategies to achieve better electrical performance
- Integration of vapor phase delivery system into ALD reactor
- Transistors and other devices fabrication by areaselective gate stack deposition on both Si and Ge
- Exploration of high resolution, direct patterning methods
- Development of other types of ALD monolayer resists

Acknowledgements

People:

Bent group members Prof. Michael A. Kelly Dr. Peter B. Griffin Prof. Krishna Saraswat Prof. Chris E. D. Chidsey Prof. Charles B. Musgrave

Funding:

- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- Initiative for Nanoscale Materials and Processes (INMP)
- Stanford Center for Integrated Systems (CIS)
- Honda
- Texas Instruments Graduate Fellowship

Facilities:

20

Task B-3: Evaluating EHS Impacts of New Dielectric and Conductor Materials Etch Processes Modeling of Inductively Coupled Plasmas

Cheng-Che Hsu, Dr. Mark A. Nierode and Prof. David B. Graves Department of Chemical Engineering University of California, Berkeley Feb. 23-24, 2006 ERC Review Tucson, Arizona

ESH Impact and Project Objectives

By-products formation and transport have both process and ESH significance.

- Etching processes
 - Large set of chemistries
 - Potential toxic by-products.
 - Process is complicated, (through gas phase or surface reactions)
 but very little is known.
- ESH significance of by-products:
 - A: Wall re-deposition: potential threaten the worker.
 - B: Effluent: ESH Impact
- Goal
 - Understand mechanism
 - Identify/Predict the condition with minimum emission

- Methodology
 - Predictive model development
 - Validation: Exp. Testbed at UCB (Ar/O₂ plasmas)
 - Extend the model capability to different chemistries and reactors.
 - Assess process ESH impact.

ESH metrics

	1	Jsage Reduction		Emission Reduction			
Goals / Possibilities	Energy	Water	Chemical	PFCs	VOCs	HAPs	Other Hazardous Wastes
Identify toxic etch by- products	N/A	N/A	N/A	Could replace existing PFC use for chamber wall clean	Some by- products may be VOCs	Most by- products classi- fied as HAPs	Identify toxic materials on tool walls
Reduce toxic etch by- products	N/A	N/A	N/A	N/A	Reduce VOC emission	Reduce HAPs emission	Reduce cost of toxic waste disposal

System

Experimental System*

- Diagnostic ICP
 - Multiple Diagnostics
 - Fits 6-in wafer
 - Well-defined boundaries
 - Axisymmetric

Model

- 2D, Fluid Model
- Ar/O₂ ICP as the preliminary test
- FemlabTM and MatlabTM
 - Coupled neutral and plasma model
 - Easy to share / access
 - Easy to extend to different chemistries/systems
 - *H. Singh, et. al, J. Vac. Sci. Technol. 19, 718 (2001),

Model Formulation: Equation System

Fluid Model; Ambipolar, quasineutral, isothermal ions, Maxwellian electrons.

Overall Neutral Continuity (p)	$\nabla \cdot (\rho \vec{v}) = R_n$			
Neutral Species j mass balance (wj)	$\nabla \cdot \left(w_j \rho \vec{v} - \rho D_j \nabla w j \right) = r_j$			
Neutral Momentum Balance (u,v)	$\left[\nabla \cdot \overline{\overline{\tau}}\right] = -\nabla p - \nabla \cdot \left(\rho \vec{v} \vec{v}\right)$			
Neutral Energy Balance (T)	$\left(\nabla \cdot \vec{q}\right) = -\nabla \cdot \left(\rho \vec{v} C_v T\right) - p \left(\nabla \cdot \vec{v}\right) + S_n$			
Ion Continuity (n _{i,j} , n _{ineg,j})	$\frac{\partial n_{ij}}{\partial t} + \nabla \cdot (-D_{ij} * (\nabla n_{ij} \pm \frac{\mathrm{T}e}{\mathrm{T}i} n_{ij} \frac{\nabla n_e}{n_e})) = r_{ij}$			
Electron Energy (Te)	$\frac{\partial}{\partial t} \left(\frac{3}{2} n_e e \mathbf{T}_e \right) + \nabla \cdot \vec{\mathbf{Q}}_e = -e \vec{\mathbf{E}} \cdot \vec{\boldsymbol{\Gamma}}_e - Ee + P_{abs}$			
Holmholtz Wave Equation (E_{θ})	$(\nabla^2 E)_{\theta} = \frac{\omega^2}{c^2} K \cdot E_{\theta} - i\omega\mu_0 J_{ext,\theta}$			

Model Formulation: Numerical Scheme

Cal

- Able to handle over 9 neutral species, and 8 charged species (totally 22 equations) with PC (~1GB memory).
 - 6 neutral ,4 ions species and 15 equations in current Ar/O_2 model.
- Convergence:
 - one iteration < 20min. Need< 10 iterations.
 - Robust, and easy to converge.

Cal

Model Formulation: Ar/O₂ ICP Details

- Chemistries
 - Neutral Species: ground state Ar, O₂, O, and metastable O₂($a^{1}\Delta$, $b^{1}\Sigma$) and O(¹D)
 - Ion Species: Ar⁺, O_2^+ , O^+ , O^-
 - Major reactions: Ionization, excitation, dissociation, electron impact attachment, charge exchange. All cross sections and rate coefficients were taken from the literature.
- Model and Experiment Comparison
 - ne profile, center ne, and Te,
 - n_O, total ion flux and composition at the wall.

Results: ne and Te: Ar Plasmas

Results: ne and Te: Ar/O₂ Plasmas

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

*H. Singh, et. al., J. Appl. Phys. 88, 3889 (2000)

Result: O radical density

S Gomez, W. Graham et. al. J. Appl. Phys. 81, 19 (2002)

- Estimate higher n_O at lower pressure, and vise versa.
- Good agreement can be made by using
 - Cosby's dissociation cross section
 - $\gamma = \gamma(p)$

Cal

Get Result: Ion fluxes and Ion Composition

Conclusions and Future Plans

- An ICP predictive model, couples neutral and plasma flow
 - Easy to converge, to share, and flexible (chemistries and systems).
 - Validated by a diagnostic ICP in Ar/O₂ plasmas.
- ESH significance: for commercial tools, e.g. AMAT Al etcher
 - Predicting pollutant flux to the wall and to the emission.
 - Predicting the condition that minimizes pollutant emission. NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Acknowledgement

- NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
- University of California Discovery Grant through the Feature Level Compensation and Control Project
- Victor Vartanian, Brian Goolsby, Peter Ventzek, Da Zhang, Shahid Rauf, and Laurie Beu, Motorola APRDL
- Krishna Saraswat and Jim McVittie, Stanford (materials, device, profile)
- Rafael Reif and Ajay Somani, MIT (experiment)
- Bing Ji, Air Products (etch gases, plasma characterization)
- John Daugherty and Harmeet Singh, Lam Research (tool, wall interactions)

Low-Energy Hybrid (LEH) Water Purification Technology

A Novel Method for Removal of Recalcitrant Impurities

Subtask C-1-1

Elizabeth Castro, Mike Schmotzer, Kai Chen and Farhang Shadman

Chemical and Environmental Engineering University of Arizona

Objectives

- Develop a novel low-energy hybrid (LEH) purification technique for the removal of organic impurities
- Combine the following desirable advantages:
 - Improve reliability
 - Provide a clear environmental gain
 - Improve performance compared to the existing methods
- Integrate the new technology with typical fab UPW plant process flow to:
 - Promote synergy and efficiency
 - Reduce energy usage and waste generation
- Resolve long-term technology obstacles against true UPW recycling

LEH Technology Development Background

Conventional Sequence in Water Purification Systems

Adsorption Sequence for Water Purification System

UV Assisted Adsorption Sequence for Water Purification System

Hybrid Oxidation/Adsorption Purification System

Effect of Organic Impurities on Ion-Exchange Performance

Deactivation Model for Ion-Exchange/Adsorption Processes

• Exchange reaction

 $Cl^{-} + OH^{-} - X \qquad \stackrel{k_{1}}{\underset{k_{-1}}{\leftrightarrow}} \qquad Cl^{-} - X + OH^{-}$

- Poisoning reaction:
 - Loss of exchange sites due to the presence of organic contaminants

$$Cl^{-} - X + Org \qquad \stackrel{k_{2}}{\underset{k_{-2}}{\leftrightarrow}} \quad OrgCl^{-} - X$$
$$OH^{-} - X + Org \qquad \stackrel{k_{3}}{\underset{k_{3}}{\leftrightarrow}} \quad OrgOH^{-} - X$$

• Adsorption of organic onto inactive sites k₄

 $Org + Y \rightarrow OrgY$

 $\begin{array}{c} \mathbf{Pore} \\ \mathbf{D} & \mathbf{B} \\ \mathbf{A} & \mathbf{D} & \mathbf{A} \\ \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} &$

 $CI^- = A$ $OH^- = B$ Org = D

Dynamic system

- Low concentrations
- Transient conditions
- Multi-component interactions

Experimental Validation of Process Model

Multi-Component Case

Effect of TOC on the Dynamics of Ion-Exchange Systems

Purification Mechanism in LEH System

Т

T

Model for Photocatalytic Reaction

- $TiO_2 + hv \xrightarrow{k_1} e^- + h^+$
- $e^{-} + h^{+} \xrightarrow{k_{-1}} TiO_{2} + (heat)$
- $h^+ + H_2O \xrightarrow{k_2}OH \bullet + H^+$
- $OH \bullet + TOC \xrightarrow{k_3} CO_2 + H_2O$
- $OH \bullet + \times \xrightarrow{k_4} products$
- $M + e^{-} \xrightarrow{k_m} M(e^{-})$

- **1. Electron/hole formation**
- 2. Electron/hole recombination
- **3. Radical formation**
- 4. Oxidation of organics
- **5.** Radical combining with X (anything other than TOC)
- 6. Metal attracts electron = 0 not metal present.

Photocatalytic Oxidation of Organics

Effects of Nitrogen Doping in TiO₂

• Addition of nitrogen increases size of bond orbitals, thus **decreasing** the energy band gap.

Sol-gel Method for Preparation of Supported Photo-Catalyst

Synthesis of Titanium Oxy-Nitride

Photocatalytic Oxidation of TOC

Ethylene Glycol; UV 254nm Illumination

Comparison of Water Purification Systems

Regeneration/Backwash Requirements of Water Purification Systems

Cost Comparison of Various Water Purification Systems

Conclusions and Highlights:

- The new integrated, hybrid oxidation/adsorption is an effective technique for the removal of recalcitrant organic impurities.
- The proposed process reduces waste and chemical usage through prolonging the life of ion-exchange and activated carbon units
- The catalyst reduces the energy requirement for oxidation.

Future Plans:

- Continue to improve the catalyst deposition methodology; emphasize new promoters, based on the mechanism of promoter action found in this study.
- Industrial interactions:
 - John Croft (Intel), John DeGenova (TI), Kon-Tsu Kin (ITRI and TSMC)

ESH Metrics and Impact

I) Basis of Comparison:

Current best technology: Water supply to Ultrapure Water (UPW) treatment facility completely from natural/municipal resource. Spent rinsewaters from wafer fab processes discharged to industrial wastewater system, treated, and sent to the municipal sewer, for sanitary treatment.

II) Manufacturing Metrics

The recycling of previously purified water has been proven to improve the water quality at the point of use and will lower the cost of purification. It also provides for an improved consistency of UPW quality as less maintenance and longer run times between regenerations are necessary. Cost savings are dependent on the region with varying costs of both water supply and wastewater discharge.

An impact on wafer yield has not been determined.

III) ESH Metrics

	Usage Reduction			Emission Reduction				
Goals /							Other	
Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Hazardous	
							Wastes	
				N/A	N/A	Some	50%	
50% of spent UPW	Factor of 2	40 %	50%			reduction	reduction in	
rinsewaters		reduction in	reduction in			in acid	regeneration	
recycled to UPW		municipal	regeneration			vapors	waste/ and	
plant.		feed water	chemicals				wastewater	
				N/A	N/A	Some	> 80%	
90% of spent UPW	Factor of 3	70%	75%			reduction	reduction in	
rinsewaters		reduction in	reduction of			in acid	regeneration	
recycled to UPW		municipal	regeneration			vapors	waste/ and	
plant.		feedwater	chemicals				wastewater	

Treatment of Copper in CMP Waste Streams using Polyethyleneimine (PEI) (Subtask C-1-2)

Worawan Maketon and Kimberly Ogden

Chemical and Environmental Engineering, University of Arizona

Objectives

- Investigate the removal of copper (II) using Polyethyleneimine (PEI).
- Determine the behavior of a single packed bed column, containing PEI-agarose gel, in treatment process for surrogate Cu-CMP wastes containing copper (II) and organic IPA.

Investigate the feasibility of chelator binding CMPpad.

ESH Metrics for Task C-1-2: Novel Water **Purification Technology**

Basis of Comparison: **_**)

Current best technology. Treatment of organic and copper containing effluent by a combination of Carbon Bed, UV, precipitation, membrane filtration, and Ion Exchange.

II) <u>Manufacturing Metrics:</u>

This new treatment method will decrease the water usage by allowing for recycle of contaminated streams. This will improve the quality of water at point of use. However, the precise effect on the manufacturing metrics cannot be assessed at this stage of research.

III) ESH Metrics:

	Usage Reduction			Emission Reduction				
Goals / Possibilities	Energy	Water	Chemical	PFCs	VOCs	HAPs	Other hazardous Wastes	
Simultaneous biotreatment of organics and biosorption of copper	~ 90 %	N/A	N/A	N/A	N/A	N/A	Elimination of Ion Exchange Resin disposal	

Copper CMP Waste

- Copper metal
- Abrasive Particles: Silica, Alumina, Ceria
- Inhibitor: Benzotriazole (BTA)
- Amino Acid: Glycine
- Complexing Agent: EDTA, Citric Acid
- Surfactant: Triton, Sodium dodecyl sulfate
- Microemulsion: Isopropyl Alcohol

Theory and Method of Approach – Continuous Process

Continuous Copper Adsorption to Breakthrough

Breakthrough curves of copper adsorption on PEI

Copper binding capacity in a continuous column (g Cu²⁺/mL adsorbent):

- Surrogate waste w/o IPA 0.027 ± 0.005 w/ IPA 0.024 ± 0.005
- Real Waste 0.016 ± 0.005

Results indicate IPA has no affect in copper adsorption when presents.

Dispersion Coefficient [Van Genuchten, 1982]

Model Formulation

One dimensional Adsorption-Dispersion-Reaction (ADR) equation

$$\frac{\partial C}{\partial t} = D_z \frac{\partial^2 C}{\partial z^2} - u_z \frac{\partial C}{\partial z} - \frac{\rho_s (1 - \varepsilon)}{\varepsilon} \left(\frac{\partial q}{\partial t}\right)$$

 $C - Copper concentration<math>u_z - Interstitial fluid velocity$ $D_z - Dispersion coefficient = 4.28 cm^2/s$ $\rho - Solid density = 0.9 g/cm^3$ z - Length of column = 1.4 cm $\mathcal{E} - Bed void volume = 0.0752$

q is a function of Langmuir isotherm models: $q = Q^a \frac{bC}{1+bC}$

 Q^{a} – Maximum adsorption capacity of the adsorbent = 27.5 mg Cu²⁺/mL adsorbent b – Langmuir constant = 0.14 ppm⁻¹

Conclusion

Initial chelate-agarose adsorbent promising capabilities

- PEI-agarose showed great affinity of binding copper in batch system
- Adsorbent's stability is good
- Performance and reproducibility did not change even after regeneration

Packed bed column performance

- Large volumes of copper contaminated solutions can be concentrated down to much smaller volumes for metal recovery
- A solution containing only copper ions in solution had faster breakthrough than when IPA was present.
- Model for breakthrough curve of copper has been partially developed and still in progress of comparing with experimental data

Future Plans

- Continue on developing model of breakthrough curve for copper adsorption on PEI-agarose gel
- Investigate the use of chelators directly added to CMP pads

Theory of chelators added to polishing pad

- Target Metal Ion
- Porous and Diffusive Pad
- First binding polymeric adsorbent film
- High capacity polymeric adsorbent film
- Sub-pad
- Adhesive Layer

Filtration and Biotreatment Scheme to Recycle CMP Wastewater

Yeira Padilla-Luciano Chemical Engineering Department University of Puerto Rico- Mayagüez, PR Chemical & Environmental Engineering Department University of Arizona- Tucson, AZ

Goal

The overall benefit and motivation for this study is to explore the possibility of water reuse in semiconductor and biotechnology industries.

Objectives

- To develop mass-exchanger based on dual function depth filters and bio-treatment to treat wastewater.
- To remove Silica and Alumina nanoparticles, Copper, and IPA from Chemical Mechanical Planarization (CMP) wastewater.
ESH Metrics for Task C-1-2: Novel Water

Purification Technology (Biotreatment)

I) Basis of Comparison:

Current best technology. Treatment of organic and copper containing effluent by a combination of Carbon Bed, UV, precipitation, membrane filtration, and Ion Exchange.

II) Manufacturing Metrics:

This new treatment method will decrease the water usage by allowing for recycle of contaminated streams. This will improve the quality of water at point of use. However, the precise effect on the manufacturing metrics cannot be assessed at this stage of research.

III) <u>ESH Metrics:</u>

	Usage Reduction			Emission Reduction			
Goals / Possibilities	Energy	Water	Chemical	PFCs	VOCs	HAPs	Other hazardous Wastes
Simultaneous biotreatment of organics and biosorption of copper	~ 90 %	N/A	N/A	N/A	N/A	N/A	Elimination of Ion Exchange Resin disposal

Research Overview

- Biological Organisms
 - Cu(II) biosorption

Immobilized Soil 5Y cells. 0.14 g Cu²⁺/g dry biosorbent

- (Stanley and Ogden, 2000)
- Organics treatment

IPA4- organics degrading bacteria

- Previous Works
 - Oily Wastewater (Bogere et al. 2004)
 - Biofouling (Zaidi et al. 1996)
 - Behavior of cells to reduce copper and IPA.

Treatment of Surrogate CMP waste without nanoparticles (Stanley and Ogden 2003; Ruiz and Ogden 2004)

Experimental Methods and Results

• Filtrated Slurry (100 series filter)

- Approximately 500mL of slurry was filtered R.P. Products 100 series (1 micron 95% efficiency).
- The TSS of each filtered solution was determined using EPA 160.3 Gravimetric method.

Sample	TSS (ppm)	Filtrated TSS (ppm)	
1	51280	17250	
2	51250	16710	TSS Removal
3	51540	17460	67%
Average	51,357	17140	

Equipment

 Virtis Omni-Culture Reactor

Biofilm Carrier Elements

Kaldnes media provides maximum surface area for the bacteria to colonize and produce bio film. (Source: www.aquamerik.com)

<u>TECHNICAL</u> SPECIFICATIONS	Kaldness	
Material	Polyethylene	
Specific Surface Area	152 ft2/ft3 (500 m2/m3)	
Maximum Fill	Up to 65%	
Weight per m3	152 kg/m3	
Number of units per m3	1,029,000	
Surface per unit	4.86 cm2	
Percentage of hollow space	93 %	
Color	Natural white	

Experimental Methods and Results

Fermentor with 5Y and biocarriers

Cell growth in presence of copper :

μ=**0.0274hr**⁻¹**= 0.658 d**⁻¹

```
Operation Parameters:
Final Volume Liquid: 1L
Biocarriers: 0.4L
5Y - R2A: 0.4L
Cu (500 ppm stock in 200 nm
filtrated slurry): 0.080L
Expected Cu: 40ppm
less 1% particles
pH = 6.25
Air: 0.5-1 lpm
RPMs: 10-15 rpm
```

Experimental Methods

Bacteria Binding Activity (5Y)

Results

Future works

- Perform similar experiments using others surrogate, commercial slurry, and real CMP waste.
- Combine 5Y and IPA-4 previously growth in biocarriers in a Virtis Omni-Culture Bioreactor to treat copper and organics at the same step.
- Study the effect of particle in the biological treatment.
- Assemble a continuous flow system using biocarriers and both bacteria.
- Combine high efficiency filtration and biotreatment in one separation/ reactor step.

Acknowledgments

- Moses N. Bogere, PhD
- Kimberly L. Ogden, PhD
- Worawan (Kay) Maketon and Yi Liu
- University of Arizona Chemical & Environmental Engineering Department
- University of Puerto Rico Chemical Engineering Department
- PR- LSAMP Bridge to Doctorate Program
- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Biotreatment of Waste Streams Containing Organic Compounds and Copper (Subtask C-1-2)

Part II: Anaerobic Treatment

Victor M Gamez, Reyes Sierra, and James Field

Chemical and Environmental Engineering, University of Arizona

Project Objectives

The goal of this research is to investigate the feasibility of anaerobic treatment for the simultaneous removal of copper and organic contaminants in CMP effluents. Removal of Cu will be stimulated by biogenic sulfides produced by sulfate reducing bacteria. The objective of the work presented here is to assess the anaerobic treatability of CMP effluents, *i.e.*,

- assess the susceptibility of key wastewater components to biodegradation by anaerobic microorganisms under batch and continuous-flow bioreactor conditions
- evaluate the treatment of simulated Cu-CMP effluents in a continuous flow bioreactor in conjunction with a crystallization reactor

Schematic representation of the anaerobic bioreactor crystallization reactor utilized in the simultaneous treatment of copper and organics from CMP wastewaters

Our Approach: Metal Removal by Sulfate Reducing Bacteria

Metal Sulfides: very low solubility products, eg. 10⁻³⁶ for CuS

Examples of Organic Contaminants in CMP are:

- Citric acid and other complexing agents
- Anticorrosion Inhibitors
- Surfactants

Bioreactor Study

Photograph of the two reactor system used in this research. (BR) Anaerobic bioreactor; (CR) Crystallization reactor packed with sand **Bioreactor (BR) & Crystallization Reactor (CR):**

Period I

Ethanol (3000 mg COD/L)

Period II

Simulated Organic CMP Waste [Isopropyl alcohol (IPA)/poly(ethylene glycol) (PEG)/citric acid] (1000 mg COD/L each)

Period III :

Simulated CMP Waste (5 mg Cu/L)

Period IV :

Simulated CMP Waste (25 mg Cu/L)

Period V:

Simulated CMP Waste (65 mg Cu/L)

Period VI:

Simulated CMP Waste (100 mg Cu/L)

System Performance:

Removal of Soluble Copper

Period	Cu ²⁺ -in (µg/l)	Cu ²⁺ -out (µg/l)	Cu removal (%)	Cu Removal (%) CR only
111	5,000	16 (+/- 19)	99.4 (+/-1.3)	99.3 (+/-0.6)
IV	25,000	162 (+/-84)	99.3 (+/-0.5)	99.3 (+/- 0.2)
V	65,000	104 (+/- 45)	99.9 (+/-0.2)	99.8 (+/- 0.1)
VI	100,000	84 (+/- 47)	99.9 (+/-0.05)	99.9 (+/-0.07)

Bioreactor/CR - EDS Analysis of Sand

Energy dispersive spectrometry (EDS) results showing (A) the clean sand (B) CuS crystal growth on sand obtained from crystallization following copper (100 mg/l) removal

XRD Analysis of Sand in Crystallization Reactor

XRD image from sand, the peaks show the presence of **covellite** (CuS)

Treatment of CMP Wastewaters in Sulfidogenic Bioreactors: Advantages

- Very low effluent Cu concentrations (> 99% removal of soluble Cu)
- Simultaneous removal of organics (>95% BOD removal)
- Selective recovery of Cu (CuS)
- Very low energy input / No chemical additives required
- Robustness and simplicity, low maintenance and operational costs
- Rapid application at the industrial scale due to widespread full-scale experience with core technology

Conclusions

- Soluble Cu was successfully removed (>99% removal) from a simulated CMP wastewater containing 100 mg/L Cu²⁺ by means of precipitation in the combined bioreactor-crystallization reactor system
- Copper has successfully precipitated on sand granules as CuS.
- Further Recovery of Cu from sand should be economically feasible.

Future Work

- Complete the study of the treatment of simulated Cu-CMP effluents in continuous laboratory experiments (anaerobic reactor combined with crystallization reactor) using effluents from a CMP pilot plant
- Evaluate the biodegradability of new compounds found in CMP wastewater
- Develop a feasible and effective biological treatment system for the simultaneous removal of metals and organics in CMP effluents

Acknowledgements. This project is partially supported by the ERC and by an NSF Advance grant (BES 0137368).

Biological and Physico-Chemical Methods for the Removal of Perfluoroctane Sulfonate (PFOS) in Semiconductor Effluents Substask C-1-5

> Valeria Ochoa, Fiona L. Jordan, Jim A Field, Neil Jacobsen & Reyes Sierra

> Dept of Chemical & Environmental Engineering University of Arizona

Introduction

- Perfluorinated surfactants are key components in a variety of IC manufacture process steps, including photolithography, wet etch and wafer cleaning, being PFOS the most widely applied perfluorinated surfactant.
- Concern about the ecological impact of perfluorinated surfactants Increasing evidence that these compounds are toxic and accumulate in biological tissues, and persist in the environment.
- US-EPA and other environmental agencies are considering regulations restricting or banning the use of PFOS and other perfluorinated compounds.

Introduction

Feasible methods for the removal of PFOS and related compounds in semiconductor effluents are needed. The application of conventional treatments for removing PFOS from wastewater streams is restricted by technical and/or economical considerations.

Approaches involving reductive dehalogenation are potentially promising for the degradation of PFOS and related perfluorinated compounds.

I. Microbial Reductive Dehalogenation:

Biodegradation of higher chlorinated aliphatic compounds, such as perchloroethylene (PCE), occurs under anaerobic conditions (1). In this metabolic process, sequential reductive dechlorination occurs by replacing chloro-groups by hydrogen atoms. Although microbial degradation of various organofluorines compounds is well documented (2), reductive defluorination has not yet been considered.

Introduction

II. Biomimetic Dehalogenation

Systems that contain Ti(III) citrate (electron donor) and vitamin B12 (aka cobalamin, catalyst) are very efficient for dehalogenation of highly-halogenated compounds (1). The direct catalysis of dehalogenation by enzyme cofactors is known as *biomimetic dehalogenation*, because it mimics reactions expected in microorganisms.

Biomimetic dehalogenation using Ti (III) citrate and vitamin B12

To evaluate the effectiveness of four different approaches for the removal of PFOS in semiconductor effluents:

Anaerobic reductive dehalogenation

- Biomimetic dehalogenation
- Activated carbon adsorption
- Biosorption

<u>Analytical Methods</u> : PFOS degradation was evaluated by monitoring the release of fluoride using an ion selective electrode. ¹⁹F-NMR and MS/MS were used to quantitatively detected and analyzed PFOS and related compounds in environmental samples.

<u>Microbial Toxicity</u> :The microbial toxicity of PFOS, PFBS $(CF_3(CF_2)_3SO_3H)$, TH-PFOS $(CF_3(CF_2)_5(CH_2)_2 SO_3H)$, and TMAH (tetramethyl ammonium hydroxide) was evaluated in batch bioassays inoculated with an anaerobic mixed culture as described elsewhere (3).

<u>Microbial reductive dehalogenation</u>: Standardized batch assays were conducted to evaluate the susceptibility of PFOS and related compounds to microbial degradation. Anaerobic sludges/sediments previously exposed to perfluorinated compounds will be used as inoculum.

<u>Chemical biomimetic degradation</u>: The susceptibility of PFOS and related compounds to chemical reductive dehalogenation with vitamin B12/Ti(III) was examined in laboratory assays. Several vitamin B12 and Ti(III) dosage, pH and temperature will be assessed to determine the optimal treatment conditions.

Results

<u>Microbial Toxicity</u> : The inhibitory effects of PFOS, TH-PFOS (a partially defluorinated compound related to PFOS) and TMAH (a common PFOS co-contaminant in semiconductor effluents) towards methanogenic microorganisms in anaerobic wastewater treatment sludge were tested at concentrations ranging from 5 to 500 mg/L. PFOS lead to a small decrease in the methanogenic activity when present at 500 mg/L. None of the other compounds tested were found to cause significant microbial inhibition in these assays.

<u>Microbial reductive dehalogenation</u>: Six different microbial inocula were employed to study the degradation of PFOS, PFBS and THPFOS. No evidence has been obtained yet that the perfluorinated compounds are degraded after 2-4 months.

<u>Chemical biomimetic degradation:</u> We have demonstrated that vitamin B12/Ti(III) can catalyze the reductive defluorination of PFOS (Fig. 1). The evidence is based on fluoride release. Ongoing work aims at the isolation and structural elucidation of defluorinated products of PFOS with MS/MS and F-NMR. This finding is highly significant because it is the first report of reductive dehalogenation of PFOS.

A

Results

Fig. 1. Fluoride release at 24°C and 74°C based on F- electrode measurements

Conclusions

- PFOS was shown to be susceptible to biomimetic reductive dehalogenation by Ti (III) citrate/vitamin B12.
- These results have important implications for biodegradation since partially defluorinated PFOS derivatives, comparable to the products expected from reductive defluorination are known to be susceptible to biodegradation by aerobic bacteria (4).
- Moreover, the findings suggest that microbial reductive defluorination of PFOS might be possible.

The replacement of fluorine with hydrogen atoms achieved by reductive dehalogenation is expected to improve the biodegradability of perfluorinated compounds in conventional biological wastewater treatment systems.

The benefits of biodegradation are the following:

- Compounds can be fully mineralized offering an advantage over alternative techniques (e.g. adsorption, membrane processes, ion exchange). These alternative processes generate residuals and brines that contain PFOS, which still need to be dealt with.
- A second advantage is that existing biological treatment infrastructure can be utilized for the proposed process.

Future Work

- Evaluate the removal of PFOS and related compounds by biosorption (using anaerobic and aerobic sludge) and activated carbon adsorption.
- Investigate the microbial degradation of PFOS and selected fluorinated compounds.
- > Optimize the biomimetic reductive dehalogenation of PFOS and related compounds
- Investigate the biological removal of the reduced products in the activated sludge process.
- Develop a hybrid process consisting of reductive dehalogenation-biological treatment for the destruction of PFOS and related compounds semiconductor effluents.

Industrial Collaboration

Walter Worth, Sematech Tim Yeakley, Texas Instruments

Literature:

- (1) Field JA & Sierra-Alvarez R. 2004. Re/Views in Environ. Sci. Bio/Technol. 3:185 254;
- (2) Natarajan R et al. 2005. J. Fluorine Chem., 126:425-436;
- (3) Hollingsworth J, Sierra-Alvarez R et al. 2004. Chemosphere, 59:1219-1228;
- (4) Key BD et al. 1998. Environ. Sci. Technol., 32: 2283-2287.

Fundamentals of Cleaning, Rinsing, and Drying

Real-Time and In-Situ Detection of Residual Contaminants in Micro- and Nano- Structures

Subtask C-2-1

Jun Yan¹, Kedar Dhane¹ Bert Vermeire² and Farhang Shadman¹

¹Chemical and Environmental Engineering, UA ²Electrical Engineering, ASU

Objectives

Objectives:

- Determine the mechanism of residual impurity removal from patterned wafers;
- Develop efficient cleaning, rinsing, and drying techniques.

ESH Impact:

Conserve resources, reduce waste, reduce processing time, reduce cost, and increase productivity.

Mechanism of Chemical Residue Removal

Stage 1

Electro-Chemical Residue Sensor (ECRS)

ECRS Sensitivity to Impurity Concentration and Type

Time (min)

Dependence of Cleaning Dynamics on Trench Dimensions

t 99.99 is the time needed for 99.99% clean up

ESH Impact of Cleaning Time and Resource Usage in Nano-Structures

Mass balance equations: $\frac{\partial C}{\partial t} = D_{AB} \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right)$ $\frac{\partial C_S}{\partial t} = \left[k_a C (S_0 - C_S) - k_d C_S \right]$

• Dimensional analysis:

$$\frac{\partial \overline{C}}{\partial \tau} = \frac{1}{W^2} \left(\frac{\partial^2 \overline{C}}{\partial \overline{x}^2} + \left(\frac{W^2}{L^2} \right) \cdot \frac{\partial^2 \overline{C}}{\partial \overline{y}^2} \right)$$

• Accumulation inside the channel is inversely proportional to the square of the trench width. This causes high rate of re-adsorption which leads to the higher cleaning time.

Sensor Reveals Rinsing Mechanism <u>1. Overflow Rinsing</u>

Sensor Reveals Rinsing Mechanism

2. Spray Rinsing

Effect of Feature Size on Cleaning Time (at 80°C)

Cleaning time refers to time needed to achieve surface concentration 9.993×10^8 molecules/cm² (Modeling material: H₂SO₄)

Effect of Feature Size on End-Point Contamination

Effect of Contamination Exposure on Cleaning Time

Alternate Applications of ECRS

1. Drying of micro/nano structures

2. Cleaning and drying of porous film

Sensor Reveals Drying Mechanism

Sensor Response to Drying Processes

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Sensor for Low-k Film Outgassing

Effect of Temperature and Feature Size on Required Rinse Time

Electrostatic Interactions

Mass Balance equations:

$$\frac{dC}{dt} = \nabla \cdot (D_{AB} \cdot \nabla C + z \cdot \lambda \cdot F \cdot C \cdot \nabla \phi)$$
$$\frac{\partial C_S}{\partial t} = \left[k_a C(S_0 - C_S) - k_d C_S \right]$$
$$\nabla^2 \phi = -\frac{\rho_e}{\varepsilon \varepsilon_0} = -(\rho_\infty e / \varepsilon \varepsilon_0)^* \exp(-z^* e^* \phi / (k^* T))$$

The electrostatic interactions become more significant as feature size decreases and purity requirements increase.

ESH Metrics and Impact

I) Basis of Comparison:

Current best technology: Currently fabs do not have capabilities for on-line and real-time measurement and monitoring of residual contaminants on wafers. Cleaning and rinsing of patterned wafers and porous films are even more complex and in need of new metrology techniques.

II) Manufacturing Metrics

The real-time and on-line metrology tools and techniques for cleaning and rinsing would save water, chemicals, and energy; it will also reduce processing time, increase throughput, and reduce cost. The impact on reliability and yield are expected to be significant but need to be evaluated later.

III) ESH Metrics

	Usage Reduction			Emission Reduction			
Goals / Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other Hazardous Wastes
Real-time and on- line sensor with 10 ppt or better sensitivity based on H_2SO_4 concentration in rinse water calibration	At least 20%	50 % reduction in water usage	Reduction in chemicals usage; difficult to estimate at this time	N/A	N/A	Some reduction in acid vapors	50% reduction in waste/ and wastewater

Acknowledgement

- Sematech: providing samples
- Freescale: joint work on testing the ECRS in a commercial rinse tool.
- American Semiconductor: assistance in fabrication
- On Semiconductor: joint work on testing test the ECRS in a commercial drying tool.
- Environmental Metrology Corporation (start-up): joint work for commercialization

Low-Energy and Low-Chemical Cleaning and Drying of Nano-Structures:

Drying of Porous Low-k Films

Subtask C-2-5

Junpin Yao, Asad Iqbal, Harpreet Juneja, and Farhang Shadman Department of Chemical and Environmental Engineering University of Arizona

In Collaboration with Sematech Interconnect Group

Background

- Porous low-k inter-layer dielectrics (ILD) are highly prone to molecular contamination
- Cleaning and drying of porous thin films is a slow and complex process

Objectives

- Study molecular contamination of low-k materials like p-MSQ and compare them with SiO₂
- Determine the adsorption and outgassing dynamics
- Determine the fundamental outgassing properties such as loading, molecular transport, chemical interactions, and removal of moisture in porous low-k films
- Develop process modeling approach for minimizing the chemical and energy usage during purging and cleaning

Experimental Setup

Experimental Procedure

Experimental procedure

Adsorption at 30°C

Desorption at 30°C

Bake-out at 100, 200 & 300°C

Temporal profile of adsorption (challenge 110 ppb moisture), followed by temperature-programmed desorption as measured by mass spectrometer

Test Samples

Wafer	Processing Conditions			
A*	Partial etch @ 10s, N ₂ H ₂ ash @ 20s			
B*	Partial etch @ 10s, HeO ₂ ash @ 20s			
C*	Blanket and cure only			
D* (JSR 5109)	Standard JSR cure, partial etch and partial ash			

* Samples provided by Sematech

Comparison of moisture loading and water contact angle

Wafer	Loading (mo	Contact angle	
	25°C	Contact angle	
A*	5.17E16	3.61E16	102°
B*	5.86E16	5.75E16	50°
C*	6.19E16	6.00E16	105°
SiO ₂	4.50E14	-	-

Dynamics of Purge

Experimental Data

Challenge Concentration: 156 ppm; Temperature: 380°C

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Moisture Adsorption Loading

Challenge Concentration : 56 ppb

• Wafer D has much higher sorption loading than SiO₂

SiO₂

∆ Electronegativity	1.7
OH site density	4.6 x 10 ¹⁴
(#/cm ²)	

p-MSQ $C_{film0} = C_{gp0} \varepsilon + C_{s0} (1 - \varepsilon)$ $C_{s0} = C_{gb0} * S$

 C_{gbo} = challenge moisture concentration C_{gpo} = equilibrium moisture concentration in the pore

C_{so} = equilibrium moisture concentration in the matrix

C_{filmo} = total moisture loading

 ε = porosity, S = solubility

Moisture Retention after Isothermal Purge

- 45-50 % of adsorbed moisture removed from $\rm SiO_2\,during\,isothermal\,N_2$ purge
- Around 15-25 % of absorbed moisture removed from Wafer D

Validation of Model

Desorption

Wafer D; Challenge Conc: 56 ppb; Purge Gas Conc: 1 ppb; Purge Gas Flow Rate: 318 sccm; Porosity: 0.48; Film Thickness: 4000 Å

Process Parameters

Parameters	Units	30°C	150°C	250°C	
D _s	cm²/s	1.4e-15	1.7e-15	3.5e-15	
D_g	cm²/s	8.5e-10	1.0e-9	3.0e-9	
S	molecules/cm ³ of film molecules/cm ³ of gas	3.65e7	1.9e7	1.0e7	
k _m	cm/s	5.0e-13	5.0e-13	5.0e-13	
k _{ms}	cm/s	1.0e-8	1.0e-8	1.0e-8	
k _{mg}	cm/s	1.0e-7	1.0e-7	1.0e-7	

- Transport through pores is micro pore diffusion
- Diffusion in matrix is primarily through molecular or intra-lattice cavities
- Exchange coefficients k_m , k_{ms} and k_{mg} are weak functions of temperature and are constant for all cases

Effect of Purge Gas Flow Rate

Wafer D; Challenge Conc: 56 ppb; Temperature: 30°C; Film Thickness: 4000 Å; Porosity: 0.48; Purge Gas Conc: 1 ppb

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Parametric Study : Effect of Film Porosity

Wafer D; Challenge Conc: 56 ppb; Temperature: 30°C; Film Thickness: 4000 Å; Purge Gas Conc: 1 ppb; Purge Gas Flow Rate: 318 sccm

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Parametric Study: Effect of Film Thickness

Wafer D; Challenge Conc: 56 ppb; Temperature: 30°C; Porosity: 0.48; Purge Gas Conc: 1 ppb; Purge Gas Flow Rate: 318 sccm

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Practical Applications of Model

- Model describes the interactions among various process steps and helps in explaining the experimental results
- > It is a practical tool for
 - estimation of residual contamination and

- optimization of process conditions to minimize effects of molecular contamination

- valuable tool for designing a desorption recipes (temperature, gas flow, and gas purity) to assure effective and efficient clean up of the dielectric films

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Conclusions

- Interaction between porous low-k films and moisture cannot be correlated with thermodynamic properties alone (such as conventional application of contact angle measurements).
- Moisture removal is a slow and highly activated process
- A process model is developed for data analysis and purge optimization.
- Interphase transport and the pore diffusion coefficients are smaller that those predicted by bulk or Knudsen diffusion mechanism.
- Increase in purge flow rate or temperature (to a much greater degree) enhance the removal of moisture; increase in film thickness and decrease in porosity slow the moisture removal.
- Moisture removal efficiency depends on purge gas purity concentration only under certain conditions (important in cost and waste reduction).

ESH Metrics and Impact

I) Basis of Comparison:

Current best technology. Purge and drying is done by best quality gas available in the fab. Very little is known about the actual dynamics of outgassing and purge requirements for cleaning and drying of porous low-k.

II) Manufacturing Metrics

More effective purge process will lower chemical (mainly pure gas) and energy usage. Purge sequence to lower the drying time leading to ESH gain as well as lower down time, higher throughput, and lower cost.

III) ESH Metrics

	Usage	Emission Reduction					
Goals/ Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other Hazardous Wastes
Purge and outgassing with lower ESH impact	Lower temperature and lower energy	N/A	Lower purge gas	N/A	N/A	N/A	N/A

Future Work

- Study adsorption of other molecular contaminants on other well-characterized and processed low-k films.
- Determine effect of pore sealing on outgassing
- Extend model to multi-component molecular contamination and non-uniform films for application to etched and ashed films.
- Apply experimental data and modeling to develop more efficient purge process for lowering purge gas and energy usage, lowering purge time (increase throughput), and lowering cost.

CMOS Biochips for Rapid Assessment of New Chemicals

Subtask C-4-3

David Mathine^{1,2}, Joseph J. Bahl³, and Raymond B. Runyan⁴

¹Optical Sciences, ²Electrical Engineering, ³Sarver Heart Center, and ⁴Cell Biology and Anatomy, University of Arizona, Tucson

Project Objectives

Traditional means of determining chemical toxicity, which typically involve expensive and laborious animal studies, cannot keep pace with the demand for new chemicals by industry. The advent of biochip technology promises to yield a high-throughput means of screening even complex mixtures of chemicals for toxicity. By monitoring the exposure response of reporter cells/tissues, investigators can identify signature reactions that indicate toxic insult.

Cell health will be monitored in real time using a CMOS based sensor where each pixel is capable of optical, chemical, and electrical measurements.

Approach to Toxicity Assay

- Rapid assessment of chemicals and process chemistries
- Important for both chemical suppliers (starting materials) and equipment suppliers/end users (for process-generated byproducts, interactions of multiple chemicals, proprietary chemistries in R/D stage, etc.)
- A first step towards an on-line ESH monitor.

Environmental Control

The overall biochamber design is based on controlling the environment for cell growth while providing the means to stimulate the cells chemically, thermally, optically and electrically.

Temperature in the chamber is controlled with a TEC module while a syringe infusion pump is used to control fluid flow through the chamber.

Spectroscopic CMOS Photodetectors

Spectroscopic Photodetectors

Spectroscopic photodetectors fabricated in a standard CMOS technology can be used to monitor this color change. The spectroscopic photodetectors also have applications in distinguishing fluorescent markers.

Monitoring Pad Capacitance

The capacitance from ITO electrodes is monitored in real time to detect protein coating of the electrodes and the induction of HL-1 cells. The HL-1 cells are cardiomyocytes and provide spontaneous beating which can be monitored during chemical exposure.

Characterization of CMOS chips for Chemical Analysis

Design

Prototype Custom CMOS Chip

Experimental Test Bed

Cell Attachment Studies

The biosensor surface is foreign to cells. Therefore, the attachment to the SiO₂ and ITO surfaces was studied. We found that COS-7 cells derived from monkey kidney cells, attached and grew well on ITO and SiO₂ coated silicon substrates without patterned biomolecules. COS-7 cells attached better to ITO coated substrates and we were able to obtain confluent cell layers.

The above figure shows DAPI stained COS-7 cells attached to a CMOS chip. An electrode grid pattern can be seen in the image.

EHS Metrics

I) Basis of Comparison - Current best technology involves animal studies to determine toxicity of new chemicals. Approaches to solve this problem center around reduced usage of toxic materials.

II) Manufacturing Metrics - The new approach aims to increase the through put of chemical toxicity testing so that new chemicals will not be introduced into the manufacturing line before the toxicity effects of these chemicals is known.

III) ESH Metrics

The goals of this work are to determine the toxicity of new chemicals. This work hopes to define the standards for toxicity.

Technology Development and Application

Future Plans

<u>Next year plan:</u>
Integrate cells with optical detectors
Test electrochemical sensors within biochamber
Monitor cellular responses to chemicals in real time

Future Plans:

The CMOS biochip promises to deliver a new generation of highly selective and inexpensive sensors for real-time and online monitoring at the manufacturing site. Future plans include building low-cost sensors for use by chemical suppliers (responsible for starting feed materials) and process engineers and ESH professionals (responsible for evaluation of new chemistries during and after the processing cycle).

Megasonic Cleaning in Semi-aqueous and Non-aqueous media Task ID C-6-1: Seed Project Srini Raghavan (PI) Hrishi Shende (Graduate Student)

Department of Material Science and Engineering University of Arizona

Mentors

Steven Verhaverbeke, Applied Materials. Wade Xiong, Texas Instruments. Mark Beck, Prosys Megasonics.

ERC Annual Review, February 2006

Objectives

- Study cavitation phenomenon in nonaqueous and semi-aqueous liquid systems using a cavitation probe.
- Identify the physical properties of liquid media (e.g. surface tension, viscosity, thermal conductivity) responsible for cleaning without damage in megasonic field.

Motivation

Cleaning of sub-100nm patterns is becoming challenging task. Application of Megasonic energy allows the use of dilute cleaning chemistries, but it also damages the patterns. It is important to find optimum parameters required for megasonic cleaning without damage.

50nm poly-Si lines on SiO2 substrate (SOI), cleaned with DI Water at 2.17W/cm2

Accomplishments During the Current Contract Year

- Investigated the effect of surface tension of the cleaning liquid and megasonic power density on cavitation
- Studied effect of viscosity of the cleaning liquid on cavitation

Cavitation Probe

Sonoluminescence measurements are carried out by a Cavitation probe from PROSYS Megasonics.

It is a real time monitor for photon count generated due to acoustic cavitation.

PZT Crystal

Effect of Surface Tension on Cavitation

- In non- aqueous liquids of low surface tension, lower photon counts were measured
- Acetic acid and Propionic acid produced very low photon count compared to DI water at a power density of 2.17 W/cm².

Liquid	S. tension (mN/m)	Viscosity (centiPoise)
Propionic acid	25.8	1.03
Acetic acid	26.3	1.056
DI water	71.99	0.855

Power density : 2.17 W/cm²

Cavitation in DI Water-Acetic system

- No change in photon count was observed at low power density (0.43W/cm2), for different conc. of DIW.
- For higher power densities (1.3 & 2.17W/cm²) photon count started increasing roughly after 55% DIW conc.

- DI water and Acetic acid have roughly the same viscosity, but different surface tensions.
- Surface tension of acetic acid solutions was altered by adding DI water.

Effect of Viscosity on Cavitation

Higher the viscosity, lower the photon count.

Liquid	S. tension (mN/m)	Viscosity (centiPoise)
DI water	71.99	0.855
Glycerol	62.5	945

- Glycerol has ~same surface tension as DI water, but extremely high viscosity.
- The dynamic viscosity (µ) of DI
 Water- Glycerol is calculated by*,

 $\mu = (1 - Xb)\mu a + Xb\mu b + Xb(1 - Xb)[\mu_0 + \mu_1(1 - 2Xb) + \mu_2(1 - 2Xb)^2 + \mu_3(1 - 2Xb)^3 + \dots]$

*Y Marcus, Solvent Mixtures Properties and Selective Solvation, New York, Marcel Dekker, 2002.

Experiments with Test Structures

- ➤ Texas Instruments has provided poly-Si fin (SOI) test structures which contain fins of different length (10,20,50,100 µm) and width (50,55,65,80 nm).
- The test structures will be used for the study of pattern damage in different chemistries.

Future Work

Identify the interrelation between photon count (Cavitation), particle removal efficiency and pattern damage through controlled contamination of bare wafers and test structures

Chemical Vapor Deposition: Direct Patterning and Selective Deposition Thrust D (Task 425.006)

Yu (Jessie) Mao, Hilton Pryce Lewis, Sal Baxamusa, and Karen Gleason Department of Chemical Engineering, MIT

> Nelson Felix, Victor Pham, Gina Weibel, and Chris Ober Department of Material Science, Cornell

Opportunities for Thrust D

Goal: Superior Performance with Environmental Responsibility

Started October 1998 via extension funding from NSF

Progress in patterning of CVD Films

initiated CVD (iCVD)

Polyacrylics by iCVD

iCVD P(MCA-MAA) Copolymer

Control of MW and Sensitivity

photo-initiated (piCVD) Reactor

FTIR poly(glycidyl methacrylate) [PGMA]

Photo-initiation

Preliminary Work: Selective Deposition by piCVD

Masked region	Type I photoinitiator	Type II photoinitiator
Unmasked region – piCVD occurring here	PGMA ⊨500 microns	PGMA 500 microns

resolutions improvement expected with
substrate preparation (H terminated wafers instead of PMMA films)
exposure optics

future work: demonstrate selective piCVD of low k films from commercial precursors and molecular glass precursors synthesized in the Ober group

Solventless Lithography: Lithographic Processing Using Supercritical CO₂

Thrust D, Subtask D-1

Nelson Felix¹, Anthony Spizuoco², Yu (Jessie) Mao³, Karen Gleason³, James Watkins⁴, and Christopher K. Ober¹

¹Department of Materials Science, Cornell University
 ²Department of Chemical Engineering, University of Massachusetts, Amherst
 ³Department of Chemical Engineering, Massachusetts Institute of Technology
 ⁴Polymer Science and Engineering Department, University of Massachusetts, Amherst

D-1 Project Objectives

Objectives:

- Identify key composition **parameters** for environmentally benign supercritical CO₂ development.
- Develop fundamental structure/property relationships for patternability and supercritical CO₂ solubility.
- Optimize SCF processing parameters for high resolution lithography.
- Investigate **new chemistries** for positive and negative tone ebeam and EUV dry resists developable in scCO₂.
- Reduce **ESH** impact by replacing wet chemistry.
- Improve resist and interfacial **quality** through all-dry processing.
- **Evaluate** environmentally benign cosolvents for device cleaning and process enhancement.

ESH Metrics

<u>Metrics for Task</u> <u>Supercritical Fluid CO2</u>

I) Basis of Comparison:

Organic solvent developers.

II) Manufacturing Metrics:

(Effect on Performance, Yield, and Cost)

Using scCO2 in place of traditional developers can drastically reduce, or even eliminate, the amount of organic solvents that are spent. There are also savings in terms of operating cost associated with using scCO2 as opposed to traditional development methods.

	Usage Reduction			Emission Reduction			
Goals / Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other Hazardous Wastes
Reduction of organic solvents used in developing photoresists and cleaning	N/A	Elimination of the need for water.	Up to 100% reduction of organic solvents.	N/A	Minimal use of organic co- solvents	Up to 100% reduction of HAPs.	N/A

Advantages of Supercritical CO₂ Development

Next Generation Lithography: Key Problems

Molecular Glasses and scCO₂

- Due to their small size, molecular glass resists of all types have **potential for CO₂ solubility...no fluorine needed**!
 - Nonpolar molecules with aromatic rings are most soluble
 - Crosslinking chemistries offer better contrasts, processing windows

Dissolution Rate Monitor

Positive Tone Molecular Glass Resists for scCO₂ Development

Molecular Glass Resists for CO₂ Solubility

Future Projects

- Use film-forming precursors based on molecular glass photoresists
 - Comprised of structures similar to current C- and Si-based low-κ materials
- Use scCO₂ to develop features and remove sacrificial porogens

Conclusions / Acknowledgements

- A green process can also be made industrially attractive by optimizing materials and conditions.
 - New materials
 - Inherent performance advantages
- Impressive synergy between molecular resists and scCO₂ development.
- Cornell Nanofabrication Facility (CNF)
- Cornell Center for Materials Research (CCMR)
- Semiconductor Research Corporation (SRC)
- IBM; Heidi Cao / Intel; Will Conley / Freescale
- Ober Group members
 - Kosuke Tsuchiya, Camille Luk, Anuja De Silva
 - Dr. Seung Wook Chang, Dr. Da Yang, Dr. Dan Bratton

Solubility of chlorosilanes in scCO₂ for the repairing of low-k films

Eduardo Vyhmeister

Advisors: Anthony Muscat[†]. Antonio Estévez^{*} and David Suleiman^{*}.

(† Chemical & Environmental Engineering, University of Arizona. * Chemical Engineering. University of Puerto Rico, Mayagüez campus.)

Eduardov@email.arizona.edu

Department of Chemical & Environmental Engineering

University of Arizona, Tucson, AZ 85721

Introduction

 High performance semiconductor devices require lower power consumption, resistance and capacitance (RC delay) while diminishing cross talk. The introduction of low-*k* films reduces the capacitance of interconnection (figure 1). The incorporation of non polarizable component can reduce even more the *k* value of these films. Air, in the form of pores, is introduced to produce this effect but it add more complexity for it's integration.

Figure 1, M. B. Korzenski, and T. H. Baum, Chemical Formulations for Stripping Post-Etch Photoresists on a Low-k Film in Supercritical Carbon Dioxide

Introduction

Porous materials are damaged during the pattering (etching and ashing) and the *k* value is increased. Various approaches have been proposed to avoid, protect or repair the films.

The use of chlorosilanes to repair the damaged pores can generate a protective layer to prevent future damage, previous studies have showed the thickness of this protective layers in function of the chemical compound used (figure 7).

Due to enhanced transport properties, low surface tension and solvating power solvents such as scCO2 may find use processing porous materials with features below 50 nm.

The concentration of chemical additives may affect the thickness of the capping layer, an important aspect for the integration of this technology.

ESH Impact and Metrics

- Basis of Comparison
 - Current best technology: organic solvents such as methanol or inorganic acids for backend cleaning
- Manufacturing Metrics
 - Eliminate aqueous cleans and subsequent rinses, reducing consumption of co-solvents and ultra-pure water.
 - Reduce volume of aqueous water requiring treatment
 - Requires recovery and treatment of co-solvent products
 - Reduces worker exposure to vapors
 - Saves energy with ultra-pure water reductions
 - Non-aqueous cleaning techniques more compatible with vacuum processing, encouraging development of a tool to serve multiple functions

			Usap	e Reduction	Emission Reduction								
Z	Goals / Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other Hazardous Wastes	STANFORD			17.U	
	Backend liquid phase chemistry and drying.	>50%	100%	Replace n-methyl pyrrolidone	undeterm- ined.	Must capture and treat co-solvents.	CQ ₂ is non-hazardous. MeOH is on HAPs list.	100% reduction in liquid waste.	() of ARIZO			BEAMER	

• Measure solubility and critical point of mixtures of chlorosilane (MTCS, DMDCS and TMCS) dissolved in scCO2 to determinate the optimal temperature and pressure for the repair of damaged low-k films.

• Generate new data for the seldom studied interaction between supercritical fluids and liquid additives.

• Through the knowledge of solubility at different temperatures and pressures, attempt to control thickness of chlorosilanes capping

• Study by in-situ FTIR the chemical reaction of chlorosilanes and water on the surface and pores of damaged low-k films.

Equipment and system setup

- Solubility cell (stainless steel cylinder with sapphire window) and batch reactor (extraction chamber closed to the ambient for 3 hours to reach equilibrium between compounds and CO₂, figure 4) have been used to obtain information on solubility and phase equilibrium.
- Chlorosilanes are corrosive, toxic and volatile compounds.
- A heating blanket and thermocouples were used to control the temperature to ±0.1 °C in the solubility cell. A syringe pump was used to deliver the CO₂ inside both chambers within the cylinder and control the pressure during experimentation (figure 2). A piston separated the chambers allowing a constant concentration on the front side.

Validation of the solubility cell

Found the C.P. of pure CO2

 Solubility of Naphthalene at a given molar fraction at 36 °C,120mg producing an error of ~2 bar.

	Critical point found	Critical point of CO ₂				
Temperature (°C)	30.9 – 32.0	31.1				
Pressure (bar)	74.4 – 76.1	73.8				

Figure 3 representation of the variation of volume in pump related to the variation in pressure inside the solubility cell at $30.7 \,^{\circ}\text{C}$.

Results

- Due to lack of stirring, lack of knowledge of the diffusion rate and uncontrolled depressurization in the extraction chamber, the results obtained in this system can be viewed as preliminary data of the molecular interaction of these compounds with supercritical CO₂ (figure 4).
- The information gathered in the solubility cell shows the phase equilibrium at high pressures. It represents the mixture's critical point (red dots) and the pressures and temperatures in which at a given concentration the mixture reaches only 1 phase (liquid). (figure 5).
- By finding the mixture's critical point, it is possible to perform a more profound analysis of the chemical reaction than in previous research.
 Figure 6 shows the time needed to reach and go over the critical temperature of the mixture, in that way the time of reaction can be estimated at supercritical conditions (~7 min). Moreover, a higher control over the thickness of the growing layer could be obtained (figure 7).

Transpiration Technique

Figure 4, Solubility in scCO2 of HMDS and TMCS by the use of a extraction chamber and allowing equilibrium of 3 hours. Solubility was found by weight differences of previous and final results. Precision is not necessarily accurate because during weighting , contact with air was impossible to be avoided.

Solubility of MTCS and DMDCS in scCO₂

Figure 5 Phase diagram found for MTCS and DMDCS . Red points represent the measured critical point. the shaded surfaces show the phase boundaries between liquid and gas.

Effect of the study in low-k research

Figure 6 Representation of the layer growing by the reaction in $scCO_2$

Figure 7 *typical path of reaction in batch reactors between chlorosilanes in scCO and damaged layers.*

Top layer, pre-process

Future Work

• Finish the phase diagrams for TMCS and produce additional phase diagrams for other compounds that are of interest for semiconductor applications.

• Perform a more profound study of the reaction between chlorosilanes, water and damaged films by the use of in-situ FTIR.

•Find a method to control the thickness of the capping layer.

•Model the solubility by use of E.O.S.

Acknowledgements

 NSF/SRC EBSM Engineering Research Center (EEC-9528813/2001-MC-425)

pc.watch.impress.co.jp

•Bo Xie, Lieschen Choate and all the coworkers of the Muscat research

Ultra Low-*k* Film Repair and Pore Sealing Using Supercritical Fluids (Thrust D-5, Task 425.010)

Lieschen Choate

Advisor: Anthony Muscat

Ichoate@email.arizona.edu, muscat@erc.arizona.edu

Department of Chemical & Environmental Engineering

University of Arizona, Tucson, AZ 85721

Project Objectives Porous Methylsilsesquioxane (pMSQ)

- Remove silanol groups to lower dielectric constant
- Restore hydrophobicity
- Maintain mechanical strength
- Find environmentally benign methods for processing wafers
- Use inert, inexpensive, easily controlled solvents. Ex: supercritical carbon dioxide

 $(scCO_2)$

ESH Impact and Metrics

Basis of Comparison

Current best technology: organic solvents such as methanol or inorganic acids for backend cleaning Manufacturing Metrics

Eliminate aqueous cleans and subsequent rinses, reducing consumption of co-solvents and ultra-pure water.

Reduce volume of aqueous water requiring treatment Requires recovery and treatment of co-solvent products

Reduces worker exposure to vapors

Saves energy with ultra-pure water reductions

Non-aqueous cleaning techniques more compatible with

vacuum processing, encouraging development of a tool to serve multiple functions

			Usag	e Reduction	Emission Reduction						
7	Goals / Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other Hazardous Wastes		STANFORD . MIL	
	Backend liquid phase chemistry and drying.	>50%	100%	Replace n-methyl pyrrolidone	undeterm- ined.	Must capture and treat co-solvents.	CQ ₂ is non-hazardous. MeOH is on HAPs list.	100% reduction in liquid waste.	A of ARIZO		BERKELEL

Chemistry of Chlorosilanes and p-MSQ

When the Silicon wafers are processed by O_2 plasma ashing, silanol (SiO-H) groups form in the low-*k*. These SiO-H groups cause the film to be hydrophilic, increasing the dielectric constant.

Chemistry of Chlorosilanes and p-MSQ CH3 I CH2-ȘI-CI TMCS reacts with HCI H-CI and water (from ambient air in reactor) to form CH trimethylhydroxylsilane CH2-Śi-OH H~~H Trimethylhydroxylsilane reacts with a hydroxyl group on the p-MSQ surface

Chemistry of Chlorosilanes and p-MSQ

Processing Samples

- Samples are loaded into a batch reactor with chlorosilanes
- Reactor is filled with scCO₂ and cooled to about 5°C
- Reactor is heated for 17 minutes and then evacuated
- Final Temperature = 53 ±10°C
- Final Pressure = 252 ± 50 atm
- CO₂ Critical Temperature = 32°C
- CO_2 Critical Pressure = 72 atm

FTIR of p-MSQ Film Repair with MTCS

Contact Angle/Dielectric Constant/ Ellipsometry Measurement Bottom layer, pre-process Bottom layer, pre-process

Ellipsometric Porosimetry: Pore Capping

Conclusions/Future Plans

- Conclusions:
 - TMCS restores the dielectric constant, but not the contact angle
 - MTCS very reactive, adds silyl layer to film's top surface, sealing pores
- Future Plans:
 - Experiment with different pore sizes
 - Build ellipsometric porosimetry capability
 - Patterned/CVD low-k samples
 - Use continuous flow reactors
 - Vary experiments by controlling pressure/temperature
 - Investigate successful scCO₂ chemistries using gas

phase process

Industrial Collaboration/ Technology Transfer

- Sematech
 - Steve Burnett (ESH Program Manager)
 - Eric Busch (Interconnect Division, AMD Assignee)
 - Frank Weber (Interconnect Division, Infineon Assignee)
- NSF/SRC EBSM Engineering Research Center (EEC-9528813/2001-MC-425)
- Texas Instruments
 Phil Matz
- University of Arizona
 - Bo Xie, Adam Thorsness, Gerardo Montano

Non-PFOS Photoacid Generators: Environmentally Friendly Candidates for Next Generation Lithography

Christopher K Ober Department of Materials Science and Engineering Cornell University, Ithaca, NY 14853 -1501 cober@ccmr.cornell.edu

Reyes Sierra Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721-0011 rsierra@email.arizona.edu

ERC Review, February 2006

Cornell University

Collaborators & Support •Ramakrishnan Ayothi and Yi Yi (Cornell University) •Chris Ober Group (Cornell University) •Intel Corporation •Dr. Heidi Cao and Dr. Wang Yueh (Intel)

Project Objectives

To develop environmentally friendly perfluorooctylsulfonate (PFOS) free photoacid generators (PAG) targeting high quantum yield of acid generation, high boiling point, adequate distribution and diffusion and line width roughness reduction

ESH Metrics

- Metrics for Task Non-PFOS Photoacid Generators (PAGs)
- Basis of Comparison Pefluoroalkylsulfonate (PFAS) PAGs
- Manufacturing Metrics Use of PFOS free PAGs that can address both performance and environmental concern raised by PFOS PAGs
- ESH Metrics PFOS emission reduction Environmentally friendlier chemicals

Fundamental Resist Challenges For NGL: Example EUV

- EUV resist must have higher sensitivity (5 -10 mJ/cm²), resolution (32 nm) and lower LER (3 σ <1.6 nm)</p>
- Phtoacid Generators generates strong catalyst upon exposure, which increases the resist sensitivity
- The Stronger the acid, the more sensitive the resist but poor LER
- The Weaker the acid, less sensitive the resist but good LER
- Photoacid Generators Critical Component for Chemically Amplified Resist

"EUV Resist Performance Trade-Offs" Robert Brainard, Kim Dean, Thomas Koehler

Why PFOS Photoacid Generators?

- Strong acid (pKa ~ -11) sensitivity & speed
- Non-polar tail solubility, miscibility, low contamination, defects, thermal and hydrolytic stability
- Optical properties Uniform exposure/image contrast
- Size (272 cm³) low acid volatility/diffusion length

Perfluorooctylsulfonate (PFOS) Issues

PFOS - Environmental, Health and Safety Challenges

Global Distribution (polar bears to EU minister)

Higher P_{OW} (Preference to Aquatic Animals)

Fluorine (Longer Biological Life)

Toxic

PFOS PAG - Lithography/Nanotechnology Challenges

Fluorous self-assembly - Segregation and Leaching

Acid Diffusion – Line Edge Roughness

Fluorine absorption and side reactions

Map showing collection locations for marine mammal samples Environ. Sci. Technol. 2001

Cornell University

Anatomy of Non-PFOS PAG

Non-PFOS PAG Design

>Acid strength - Few fluorine atoms or Non-Fluoro electron attracting Group

- >Transparency Aromatic for EUV / Non-aromatic for 193
- Distribution and Diffusion Functional Groups
- Size/volatility/solubility/Leaching Variation of R group
- >Absorption, outgassing and thermal/formulation stability Stable Chrmophores

Synthesis and Characterization

<u>Key steps:</u> Substitution, Hydrogenation, Dehalogenosulfination, Dehalogenosulfonation, Chlorination/Oxidation, Ion-exchange reaction and Esterification.

Analytical Instrument	Information	
NMR (H,C,F)	Conversion	
MS and Elemental	Purity/Structure	
TGA and DSC	Thermal Properties	
UV/VIS Spectroscopy	Absorption Characteristics, Residual acid, Solubility	
ICP/AAS	Metal content	
DUV/e-Beam	Sensitivity	

- Standard PAG Fragments outgas from non-PFOS PAGs (Outgassing Experiments Performed at University of Wisconsin)
- Lower Absorption at EUV (Estimated using http://wwwcxro.lbl.gov/optical_constants/filter2.html)

Non-PFOS PAG Performance Versus TPS PFBS

Polymer Resist E₀ (100 nm) < 4.9 mJ/cm²; E_s = 7.5 mJ/cm²; LER (100 nm 1:1 lines) = 7.7 ± 0.8 nm

Molecular Glass Resist : $E_s = 21.0 \text{ mJ/cm}^2$ R = 25 - 30 nm; LER (60 nm lines) = 5.0 nm

Polymer Resist E₀ (100 nm) < 6.4 mJ/cm²; E_s = 8.6 mJ/cm²; LER (100 nm 1:1 lines) = 8.0 ± 0.6 nm

Molecular Glass Resist : $E_s = 39.0 \text{ mJ/cm}^2$ R = 30-35 nm; LER (60 nm lines) = 4.3 nm

•Cornell Nanofabrication Facility (CNF) •Cornell Centre for Material Characterization (CCMR) •Lawrence Berkeley National Laboratory (EUV exposure)

Estimation of Environmental Fate of Non-PFOS Photoacids (PGAs)[#]

PFBSA - Perfluorobutane Sulfonic Acid PFOSA - Perfluorooctane Sulfonic Acid CUPGA - Cornell non-PFOS photoacid

Acid (No. of Fluorine)	Biodegradation Timeframe (Primary)	Biodegradation Timeframe (Ultimate)	Formula Weight
PFBSA (9 F)	Weeks	Recalcitrant	300
PFOSA (17 F)	Months	Recalcitrant	500
CUPGA (4 F)	Days-Weeks	Weeks-Months	274

* Compounds with 9 Fluorine atom and below do not bioaccumulate

[#]Estimated using EPI Suite - environmental fate estimation models developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC)

"Non-PFOS PGA no/low bioaccumulation"

Assessment of the Environmental Fate of Non-PFOS PAGs

- Development of analytical methods for compound detection
- Bioaccumulation potential
- Inhibitory effects
 - e.g., Microtox assay, inhibition of aerobic and anaerobic microorganisms in wastewater treatment systems, inhibition of mitochondrial respiration (MTT assay)

Fate in wastewater treatment systems:

- Sorption to biosolids
- Susceptibility to microbial degradation:
 - Utilization as carbon/energy source: Aerobic and anaerobic conditions
 - Cooxidation[#] : Aerobic heterotrophic- and nitrifying conditions

[#]The new non-PFOS PAGs are only partially fluorinated. Lower halogenated hydrocarbons are generally susceptible to attack by monooxygenases

Cornell University

Removal of Non-PFOS PAGs from Semiconductor Effluents

Assessment of the treatability of the new non-PFOS PAGS using biological and physico-chemical methods, e.g.,

- Activated sludge treatment
- Activated carbon adsorption
- Ion exchange
- Membrane processes
- Advanced oxidation methods

Research Plan

Synthesis and Characterization of Non-PFOS PAGs with fewer fluorine atom

Evaluation of PAGs at 193 nm and EUV Lithography

Synthesis of the acid or their alkali metal salt of the best performed PAG for obtaining Environmental, Health, Safety, and Regulatory (EHSR) Profile

EHSR Profile for new Non-PFOS acids or anions

