<u>Development of an All-Wet Benign Process for</u> <u>Stripping of Implanted State-of-the-Art Deep UV Resists</u>

(Task number: 425.033)

<u>Experimental Investigation of</u> Catalyzed Hydrogen Peroxide (CHP) System For HDIS

<u>PI:</u>

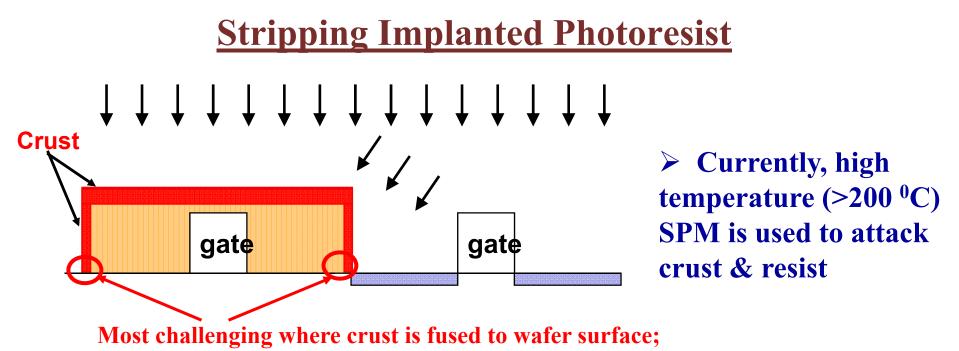
• Srini Raghavan, Department of Materials Science and Engineering, UA

Graduate Student:

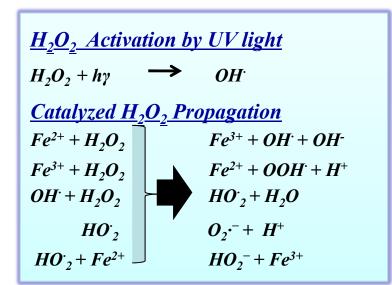
• R. Govindarajan, PhD candidate, Department of Materials Science and Engineering, UA

<u>Cost Share (other than core ERC funding):</u>

• In-kind donation of ion-implanted resist wafers by *Sematech*(~ \$ 5,000) and FSI International (~ \$ 2,000)


Objectives

Overall Objective:


Development of an environmentally friendly process for stripping high dose implanted resists using catalyzed hydrogen peroxide system (CHP)

Current Year Goals:

- Eliminate/reduce the use of iron in Catalyzed hydrogen peroxide (CHP) system
- ➢ Investigate the use of UV activated Hydrogen Peroxide system for disrupting crust formed on resist layers exposed to high dose of ions (≥10¹⁵ /cm²)

also near EBR region

 Radicals- strong oxidants
 CHP system disrupts crust and provides access to SPM

Perhydroxyl radical (HO $_2^{-}$ – weak oxidant); Superoxide radical anion(O_2^{-} – nucleophile) Hydroperoxide anion (HO_2^{-} – strong nucleophile)

ESH Metrics and Impact

> SPM solution

- Requires high temperature (> 200^oC) for stripping high dose implanted resists
- Comparison of toxicity of ingredients in CHP and SPM

Compound	LD ₅₀	Carcinogenic
Ferrous sulfate	1520mg/kg (mouse)	NO
Peroxide	2000 mg/kg (mouse)	NO
Sulfuric acid	90 ml/kg (rat)	Yes
UV light (216nm)	3 mJ/cm ² (Bacteria)	Yes

> ESH Impact

• By using low temperature (< 120⁰ C) SPM as a secondary chemical, *energy and safety issues related to the use of very hot SPM can be significantly reduced*

Current Year Activities

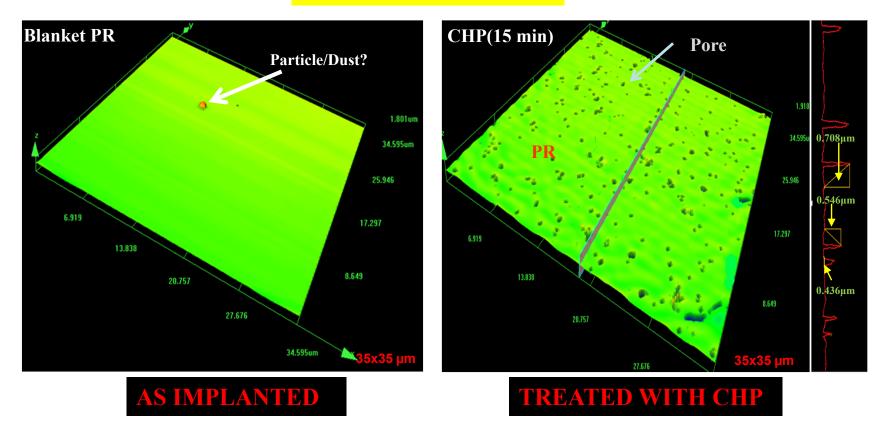
Carried out studies on spin tool for disrupting crusted resist using Catalyzed Hydrogen Peroxide (CHP) system

> Explored the use of UV activated Hydrogen Peroxide system for disrupting crust that typically forms on high dose implanted resists

➢ With permission from FSI, characterized wafers subjected to their proprietary steam activated SPM process (ViPR[®]); compared effectiveness of CHP/SPM process with ViPR[®] process

Experimental Approach

≻Materials

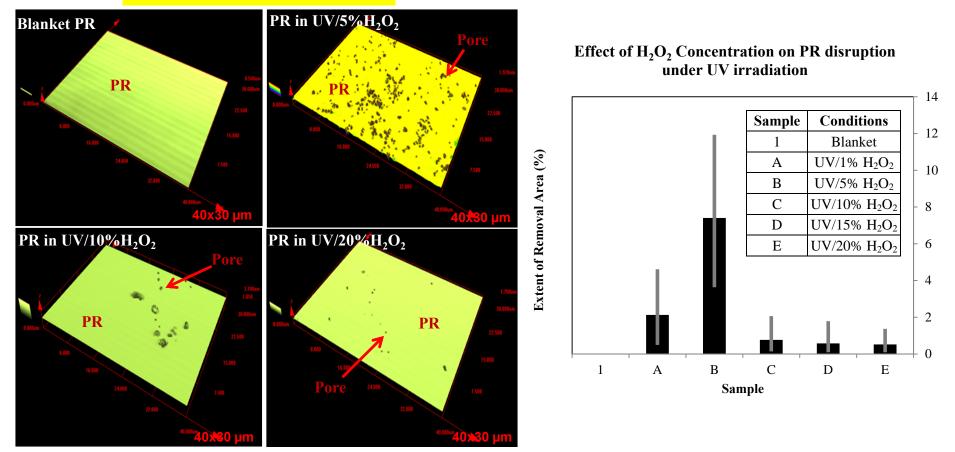

- Implanted resist films (1E16 As /cm²; ~1.5 μm) donated by Sematech, (1E15 As /cm² ~1.0 μm) FSI International
- UV light source (Wavelength: 254nm; Intensity : 12.2 mW/cm² at 3")
- Ferrous Sulfate (FeSO₄. 6H₂O) , 99.998% pure
- Hydrogen Peroxide (30%)

>Methods

- Experiments conducted on Laurell Spinner using puddle method (dispensing solution, allowing it to stay, followed by spinning)
- Morphological changes after CHP treatment were characterized using Leica DM4000B microscope operated using QCapture Pro 5.0 software, Leeds Confocal microscope, FESEM and XPS

Effect of CHP Treatment on Implanted PR

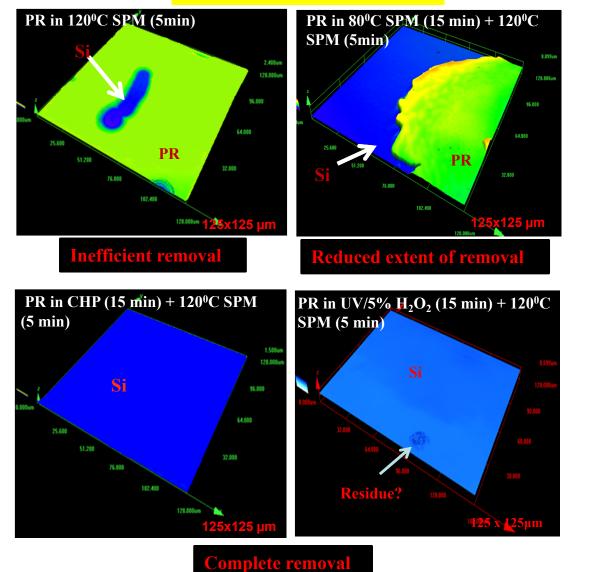
3D Confocal Micrographs


Blanket PR (dose: 1E16 As/cm²) is smooth without any pores

> CHP (5mM Fe²⁺, 20% H₂O₂) treatment @ 25⁰C for 15 minutes shows localized attack

PR surface has pores of depth < 700 nm and size < 1.5 μ m

Effect of UV Activated H₂O₂ on Implanted PR


3D Confocal Micrographs

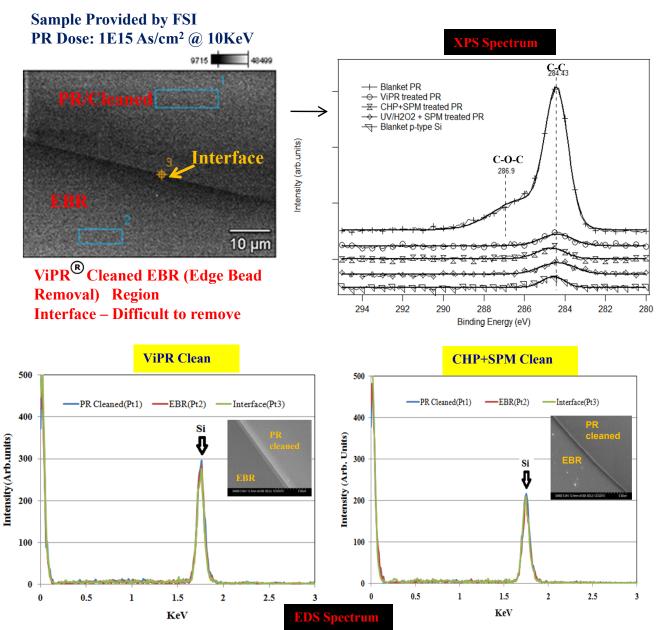
PR (dose: 1E 16 As/cm²) exposed to UV irradiated H₂O₂ at 40°C for 15 minutes
Good attack observed with 5% H₂O₂ activated by UV light
Extent of disruption/attack depends on H₂O₂ concentration

Effect of SPM & Two Step CHP(or UV-Peroxide)/SPM Process

3D Confocal Micrographs

>SPM treatment – localized PR removal (bare Si as blue color) 2:1 SPM: Preheated (80⁰C) H₂SO₄ mixed with H₂O₂, solution dispensed at ~ 120⁰ C

Two step process involving
 CHP or UV/ 5% H₂O₂
 exposure followed by 2:1
 SPM (120 °C) treatment
 results in very good removal of
 PR



- > Unimplanted and Implanted PR show dominant C-C peak with some C-O-C
- > UV/H₂O₂ & CHP treated samples contain carboxyl groups
- Stripping of implanted PR by UV/H₂O₂ followed by SPM leaves a surface with trace

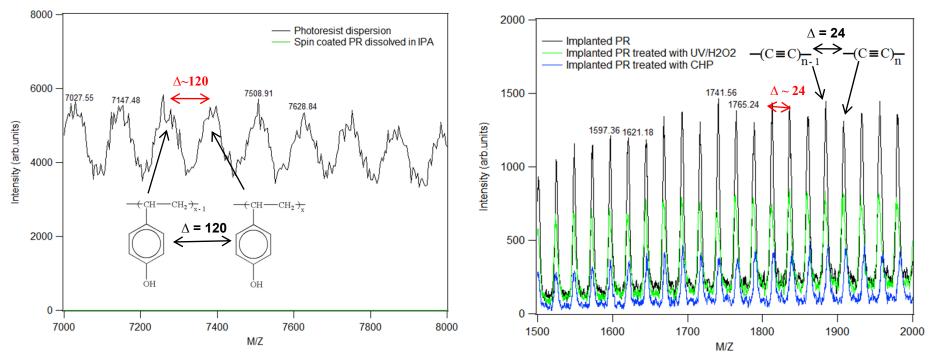
amount of carbon

Intensity (arb.units)

Comparision of FSI ViPR[®] Process with CHP Based Two Step Treatment

XPS: → XPS analysis shows dominant C-C peak at interface region for blanket Implanted PR

> XPS Spectrum of treated samples are similar to that of blanket Si – complete PR clean


EDS:

> Sample cleaned using ViPR process strips PR (no C & O signal)

➤ CHP & UV/H₂O₂ treatment (15 mins) followed by 2:1 SPM (~120°C, 5 mins) shows similar result as ViPR process

Preliminary Investigation of Crusted PR Using LDI-MS

(Laser Desorption/Ionization – Mass Spectroscopy)

>Molecular weight of fragments from liquid resist differs by 120 amu, corresponding to hydroxystyrene unit

Spin coated PR film dissolved in IPA shows no signal; fragments released too large to be effectively ionized -- Needs further study

>Molecular weight of fragments from implanted (1E16 As/cm²) resist differs by 24 amu, corresponding to carbyne ($C \equiv C$) unit; crust is carbonized

Summary

- CHP system containing 5 mM Fe²⁺ and 20% H₂O₂ at 25 °C and 5% H₂O₂ exposed to UV at 40 °C create surface defects on high dose implanted PR; modifies the chemical nature of crust
- ➢ Good removal of high dose implanted PR is possible by first exposing the resist in CHP or UV irradiated 5% H₂O₂ solution for 15 minutes and then in 2:1 SPM at ~120 °C for 5minutes under spin conditions
- Effectiveness of two step CHP/SPM process appears comparable to that of FSI's ViPR process

Deliverables Status

Promised Deliverables	Y/N/IP
Use of non-metal based catalyst to activate Hydrogen Peroxide	Yes; Using UV source
Work with Tool maker to test/compare the chemical system	Yes; For 1E15 As/cm ² implanted samples with FSI's ViPR process
Evaluation of two step (CHP and UV irradiated H_2O_2 followed by conventional SPM) process to strip films	Yes

Future Plans

Next Year Plans

- Optimization of UV activated hydrogen peroxide system to decrease the exposure time prior to conventional SPM treatment
- Explore the use of *non-metal catalysts* such as borates

Long Term Plans

• Investigate the use of sulfuric acid alone as the second step

Industrial Interactions and Technology Transfer

- Patent on "Enhanced Stripping of Implanted Resists", was filed by SRC in December 2010 (File No: US 12/981,073)
- R. Govindarajan, M. Keswani and S. Raghavan, "Development of an all wet benign process based on catalyzed hydrogen peroxide (CHP) chemical system for stripping of implanted state-of-the art Deep UV resists ", TECHCON Conference, Austin, TX, Sep 13-14 (2010)
- R.Govindarajan, M.Keswani and S.Raghavan, "High Dose Implant Resist Stripping (HDIS) Using Catalyzed Hydrogen Peroxide (CHP) Systems", accepted for presentation at the 219th ECS Meeting in Montreal, Canada, May 1 - 6 (2011)
- Interactions with Dr. Kanwal Singh of Intel on patterned wafers
- Technical discussions with Joel Barnett of Sematech & Jeff Butterbaugh of FSI International Acknowledgement
 - Assistance of Bob Morris of Oclaro on Confocal microscopy