Effect of CMP on abrasives and their surface characteristics

S.V. Babu

Center for Advanced Materials Processing

Clarkson University

Outline

- Introduction
- Common CMP slurry abrasives and additives
- Effect of additives and polishing on abrasives
- Some aspects of III-V polishing
- Contribution of pad to slurry waste
- Summary and Conclusions
- Acknowledgements

Common slurry components: BEOL

Substrate		Slurry Components			Species present post-polish	
•	Cu	•	Silica/Alumina	•	OH-, surfactants/ adsorbed	
•	Cu/Ta/TaN	•	pH adjusting agents such as HNO₃, KOH, NH₄OH, etc.		metal ions/ metal oxides and pad debris	
•	Cu/Ti/Co		and buffers			
•	Cu/Ti/Ru	•	Oxidizer (H ₂ O ₂ , Ferric nitrate, KIO ₄ , KMnO ₄ etc.)	•	dissolved, suspended and settled fine particles and	
•	Cu/Mn	•	Complexing agents (amino acids such as glycine,		dissolved metals	
•	W		carboxylic acids such as	•	Unreacted oxidizers,	
•	SiCOH		citric acid)		complexing agents,	
		•	Corrosion inhibitors (BTA and its derivatives) Surfactants		inorganic ions, etc.	

Common slurry components: FEOL

S	ubstrate	Slurry Components	Species present post-polish
•	SiO_2/Si_3N_4	Silica, CeriapH adjusting agents	 Arsenic rich waste Dissolved AsH₃, PH₃
•	W, Al	such as HNO ₃ , KOH, NH ₄ OH, etc. and buffers	 and NH₃ Adsorbed metal ions Unreacted Oxidizing
•	Ge GaAs	 Oxidizer (H₂O₂, etc.) Surface modifying agents 	agentsInorganic ions
•	InP		Unreacted complexing agents
•	InGaAs InAlAs		ugents

Common abrasives used in CMP and their characteristics

(a) Rhodia Ceria (d_m -60nm)

(b) Nexsil colloidal Silica (d_m-50 nm)

(c) Aerosil Fumed Silica (d_m- 130 nm)

	Bulk density (g/cm ³)	Mohs Hardness	IEP	Possible species on surface
Silica	2.65	6-7	~2	$M-OH_2^+ \longrightarrow M-OH + H^+$
Ceria	7.65	6	6-8	M– OH> M–O [−] +H ⁺
Alumina	3.95	9.0	9	M= Metal

• H. Bergna et al., Colloidal Silica Fundamentals and Applications, Taylor and Francis, 2006

• George V. Franks, and Yang Gan J. Am. Ceram. Soc., 90 [11] 3373–3388 (2007).

Differences between colloidal and fumed Silica

Image: state of the state of	Colloidal silica Fumed Silica Colloidal silica
Fumed Silica	Colloidal Silica
Possible Cl contamination due to manufacture from chloro-silane (<200 ppm)	Possible Na contamination due the to manufacture from sodium silicate
Large hard and soft aggregates Generally used at high pH -> High Concentration of dissolved silica	Surfactants to maintain colloidal stability

- <u>http://www.aerosil.com/product/aerosil/en/industries/papers/pages/default.aspx</u>
- Z. Li, K. Ina, P. Lefevre, I. Koshiyama, and A. Philipossian. Journal of The Electrochemical Society, 152(4)G299-G304~2005.

Silica Speciation

M= Cation from the pH adjusting agent (K^+ , NH_4^+)

• Dove and Elston. Geochimica et Cosmochimica Acta. Volume 56, Issue 12. December 1992, Pages 4147–4156.

Solubility of Silica as a f(pH)

Saturation concentration of silica, (C_s) as a function of pH

Silica can dissolve as a silicate as shown below:

 $-SiO_2 + 2OH^- \longrightarrow Si(OH)_2O_2^{-2}$ Can form insoluble species quickly when they react with metal cations (Ca⁺², Zn⁺² and other heavy metal impurities)

8

 Wolfram Vogelsberger,* Andreas Seidel and Georg Rudakoff. CHEM. SOC. FARADAY TRANS., 1992, 88(3), 473-476

Possible interactions and metal impurities on silica surface

Electrostatic Interactions :

Adsorption of cationic surfactants/stabilizers and metal ions.

 $-SiO^{-} + C_{19}H_{42}N^{+}$ (CTAB) $\longrightarrow -SiO C_{19}H_{42}N$

Acid-Base Reactions:

 $-SiOH + NH_4OH \longrightarrow -SiO NH_4 + H_2O$

	Metal	Conc. (ppb)
1	Al	50
2	Са	110
3	Cr	22
4	Cu	10
5	Fe	85
6	Mg	20
7	Ni	11
8	К	50
9	Na	20
10	Zn	11

Trace Metal Contamination in fumed silica slurries measured with ICP-AES

• Yamada et al., Journal of The Electrochemical Society, 158 (8) H830-H835 (2011)

Possible interactions on ceria surface

Effects of polishing on the abrasives

Cu/Ta barrier CMP - Where does the polished metal go?

- Ying Li, Junzi Zhao, Ping Wu, Yong Lin, S.V. Babu, Yuzhuo Li. Thin Solid Films, Volume 497, Issues 1–2, 21 February 2006, Pages 321–328.
- Y Li, M Hariharaputhiran, S.V Babu J. Mater. Res., 16 (2001), p. 1066
- A. Vijayakumar, T. Du, K.B. Sundaram, V. Desai, Polishing mechanism of tantalum films by SiO₂ particles, Microelectronic Engineering 70 (2003) 93-101

Ta CMP results using modified and unmodified silica in water

Location found	Fumed Silica		Modifi	Modified silica	
	Ta detected	% Та	Ta detected	% Та	
	(mg)	detected	(mg)	detected	
Solution	0.33	22	< 0.2	100	
Abrasive	1.13	75.3	ND	ND	
Pad	0.04	2.7	ND	ND	
Total detected	1.5	100	< 0.2	100	
Ta loss from disk per polish	1.63		< 0.2		
MRR (nm/min)	73.4		< 9		

Colloidal silica also shows a similar behavior

Ying Li, Junzi Zhao, Ping Wu, Yong Lin, S.V. Babu, Yuzhuo Li. Thin Solid Films, Volume 497, Issues 1–2, 21 February 2006, Pages 13 321–328

Cu CMP results using silica or alumina with 1% glycine and 1% H₂O₂

Location found	Fume	d Silica	Alumina	
	Cu detected (mg)	% Cu detected	Cu detected (mg)	% Cu detected
Solution	2.2	47.8	16.6	88.3
Abrasive	2	43.5	1.5	8
Pad	0.4	8.7	0.7	3.7
Total	4.6	100	18.8	100
Cu loss from disk per polish	5.1		20.8	
MRR (nm/min)	429		1750	

Colloidal silica also shows a similar behavior

Ref: Ying Li, Junzi Zhao, Ping Wu, Yong Lin, S.V. Babu, Yuzhuo Li. Thin Solid Films, Volume 497, Issues 1–2, 21 February 2006, Pages 321–328

Polishing Mechanisms of SiO₂ with Ceria

Using Ceria to Polish SiO₂

Polishing mechanisms give an idea of the possible species on the surface of nanoparticles in the slurry waste.

- Lee Cook, Journal of Non-Crystalline Solids 120 (1990) 152-171
- Tetsuya Hoshino, Yasushi Kurata, Yuuki Terasaki, Kenzo Susa, Mechanism of polishing of SiO₂ films by CeO₂ particles. Journal of Non-Crystalline Solids 283 (2001) 129-136

UV-Vis Absorbance (Reactivity of Ce³⁺ salt)

This shift in the peak corresponds to Ce-O-Si structures

Ref: Veera Dandu, PhD. thesis. Clarkson University

Clarkson UNIVERSITY defy convention

Interaction of ceria with different additives

- The RRs of Oxide with the slurries having lower peaks were low (<2 nm/min).
- The absence of the absorbance peak is due to the blocking of all the Ce⁺³ species on the surface of the ceria particles

Ref: Veera Dandu, PhD. thesis. Clarkson University

Adsorption Isotherms showing the adsorption of "PAD" on different particles at pH 4

Dispersions : 0.25wt% ceria ($d_m \sim 60 \text{ nm}$), 10wt% silicon dioxide ($d_m \sim 50 \text{ nm}$) and 10wt% silicon nitride ($d_m \sim 50 \text{ nm}$) Clarkson

Ref: Veera Dandu, PhD. thesis, Clarkson University

ER

defv convention

Effect of washing with water on adsorbed PA and proline at pH=5

No of times	PA (re	mg/g of sol emaining or	Proline re	Proline (mg/g of solid) remaining on		
reuisperseu	Si ₃ N ₄	SiO ₂	CeO ₂	Si ₃ N ₄	SiO ₂	CeO ₂
0	96	74	13	147	98	8
1	8	9	4	6	11	1
2	<1	<1	3	1	<1	1

Naresh Penta, PhD. thesis, Clarkson University

Adsorption of polymers on particles

Structure of Poly diallyl dimethyl ammonium chloride (PDADMAC)

	Zeta Potential at pH 10			
	Bare	With 250 ppm PDADMAC	Modified particle dispersion	
Ceria	-35	+56	+2	
Silica	-60	+28	+21	
Silicon Nitride	-38	+23	+24	

• Naresh K. Penta, P. R. Dandu Veera, and S. V. Babu. Langmuir 2011, 27, 3502–3510

Adsorption of poly-cations on SiO₂ and Si₃N₄ surfaces

Amount of PDADMAC/PEI left on SiO_2 and Si_3N_4 surfaces after 2 washings with DI water at the respective pH values.

[•] Naresh Penta, PhD. thesis, Clarkson University

Adsorption of cationic polymers on poly-Si and IC-1000 pad surfaces

Zeta potentials of IC1000 pad in the absence and presence of 250 ppm PDADMAC.

Zeta potentials of poly-Si films in the absence and presence of 250 ppm PDADMAC

Adsorption of BTA on Alumina

FTIR spectra of silica particles in various cleaning solutions

• Yi-Koan Hong, Dae-Hong Eom, Sang-Ho Lee, Tae-Gon Kim, Jin-Goo Park and Ahmed A. Busnaina. J. Electrochem. Soc. 2004, Volume 151, Issue 11, Pages G756-G761

Zeta Potential of silica surfaces during PCMP cleaning

The zeta potential of (a) silica as a function of pH with and without the addition of citric acid.

• Yi-Koan Hong, Dae-Hong Eom, Sang-Ho Lee, Tae-Gon Kim, Jin-Goo Park and Ahmed A. Busnaina. J. Electrochem. Soc. 2004, Volume 151, Issue 11, Pages G756-G761

UV-Vis of spent 'Planar Clean' solution during Cu PCMP 0.1 **30:1** -30:1 0.09 60:1 60:1 90:1 0.08 120:1 0.07 90:1 Absorbance (arb.) 200:1 Absorbance(arb.) 0.06 **120:1**

0.05

0.04

0.03

0.02

0.01

0

400

600

Wavelength(nm)

to undercut process during PCMP.

Cu Oxide-Amine complex particles formed due

800

Tran et al., ECS Transactions, 44 (1), 2012, pg:565-571

Wavelength (nm)

400

600

200

26

800

Characteristics of GaAs processing waste streams

Source	Characteristics	рН	Total GaAs* (g/L)	Dissolved As (g/L)
Wafer polishing and backside polishing	Clear solution with alumina and SiO ₂ particles. May be alkaline or acidic	10-11 6	3-5	1.8-2.4

* Solid GaAs Particulates and dissolved species $(H_3AsO_3 (pH 2-9)), H_3AsO_4)$

http://www.semiconductor-today.com/features/Semiconductor%20Today%20-%20Management%20of%20arsenic-rich%20waste.pdf

Where do Ga and As end up during polish of GaAs?

	Element composition (µg/g)				
рН	S	Solids	Liquid		
	Ga	As	Ga	As	
2	39.2	33.8	19.8	18.6	
10	51.9	47	8.2	26	

• John Matovu, Clarkson University, Unpublished data

Hazards associated with GaAs processing waste streams

Waste Stream	Possible Hazards	Hazard Minimization
Solid particles as dust	Inhalation of dust	 Minimize dust generation through wet processing. Ventilation and extraction of working area of grinders and saws. Store waste in liquid slurry form in a closed container. Wear Protective clothing , mask and gloves
CMP, grinding, cutting and lapping waste slurries	 Ingestion of GaAs. Dermal Contact. Contamination of ground water through improper disposal. Ingestion of Arsenic. Generation of arsine gas during polish and in waste container. 	 Treat waste streams as hazardous waste and dispose of according to local and national regulations. Wear protective clothing and gloves. Avoid creating a reducing environment in waste slurry tank. Maintain low pH in waste slurry to avert microbial activity.

 http://www.semiconductor-today.com/features/Semiconductor%20Today%20-%20Management%20of%20arsenic-rich%20waste.pdf

Effect of Aqueous Phase pH of Slurries on PH₃ Generation (30 sec polish of InP)

Slurry	Maximum PH ₃ concentration (ppb) as a						
	function of pH						
	2	4	6	7	8	10	12
0.3 M aq. H ₂ O ₂ + 3 wt % silica	140 (34)	135 (4)	94 (10)	73 (16)	n.d.	n.d.	n.d.
0.3 M aq. H ₂ O ₂ + 3 wt % silica + 0.08 M OA	109 (14)	87 (6)	15 (3)	n.d.	n.d.	n.d.	n.d.
0.3 M aq. H ₂ O ₂ + 3 wt % silica + 0.08 M TA	120 (12)	69 (8)	26 (5)	11 (2)	n.d.	n.d.	n.d.
0.3 M aq. H ₂ O ₂ + 3 wt % silica + 0.08 M CA	179 (15)	139 (10)	47 (3)	47 (4)	n.d.	n.d.	n.d.

Values in parentheses are standard errors of

measurements; n.d. = not detected

CM-4 gas detector

John Matovu, Clarkson University, Unpublished data

Pad Debris

- Pad debris is often observed during polishing with in-situ conditioning.
- The polyurethane polishing pads possess both –COCand -COOC - functional groups in the main chain structure that experience some degree of hydrolytic attack with usage.
- Alkaline media accelerates hydrolytic attack and in the presence of weak bases degrades the polyurethane more rapidly than neutral water.

Pad Waste generated during CMP

- Particles in the effluent included slurry, agglomerates, and pad debris
- Carbon peak from SEM EDS identified pad debris

Pad staining during Ru polishing with KIO₄

Polishing pad (IC 1000) before (A) and after (B) polishing with a slurry containing 0.015 M KIO_4 + 5 wt% Silica at pH 6

Issues with Ruthenium CMP

Hao Cui, Jin-Hyung Park and Jea-Gun Park *ECS Journal of Solid State Science and Technology*, 2 (1) P26-P30 (2013).

Acknowledgments

Empire State Development | Division of Science, Technology & Innovation

(intel)

🕑 FERRO

BM

All my graduate students

Clarkson UNIVERSITY defy convention

35

Thank You