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Summary/Abstract

Owing to the recent extensive development of higtilectric technologies, the interface
property of Ge and IlI-V semiconductor gate staakenbeen greatly improved. In this work, we
investigated key interface engineering for Ge atleV | semiconductor gate stack: GgO
interfacial layer and interface self-cleaning effaclll-V semiconductor during Atomic Layer
Deposition process of high-k dielectric films, biearical characterization and photoemission
spectroscopy. GeQinterfacial layer significantly improves interfageoperty of high-k/Ge
stack and self-cleaning effect in high-k/lll-V sewminductor stack provides native oxide free
interface which will result in Fermi-level unpingn

(1) GeO2 interfacial layer in high-k dielectri/Ge stack: We utilized radical oxidation for high
quality GeQ growth. Fig. 1 shows the kinetics curve of Gefdowth on (100) and (111) Ge
substrates. There is no orientation dependencee@ growth, which is an advantage when
fabricating non-planer Ge MOSFET. Fig. 2 showsdgbGe 3d core level spectra of thermally
and plasma oxidized Ge substrate. Radical oxidgirovides stoichiometric Ge@rowth and
identical spectrum for (100) and (111) Ge substrdtey. 3 shows temperature dependence of
Ge(G growth rate. Radical oxidation has smaller terapge dependence which will provide
small thickness variation. We also studied therstability of GeQ. Fig. 4 shows Ge 3d core
level spectra of GeflGe after post deposition anneal (PDA). Ge&fs clearly desorbed above
500°C. Fig. 5 shows Ge 3d core level spectra of caiae@/Ge. GeQ was not desorbed even
above 600C and capping ADsz prevented Ge® desorption. Fig. 6 and 7 show C-V
characteristics of Al/ADy/GeGy/p-Ge MOS capacitor at room temperature andG40There is

no significant frequency dispersion and hysteredielectric constant of GeOwas 5.86 as
shown in Fig. 8. Fig. 9 shows the interface sthlsity (Dit) with GeON and GeQand Dit of
Ge(Q was improved from GeON. Fig. 10 shows the PDAetelence of Dit of Ge© Dit was
kept at low 16'cm?eV* up to 506C PDA. Finally, we estimated band offset of G&&. Fig.

11 shows O 1s energy loss spectrum of &e®ig. 12 shows valence band spectra. Fig. 13
summarized band offset and conduction band offgt W84eV. GePhas sufficiently high
valence band offset for PMOSFET operation.

(2) Interface self-cleaning in high-k dielectric/InGaAs stack during ALD process. We
started from surface chemistry of InGaAs. We z#ii Synchrotron Radiation photoemission
spectroscopy (SRPES). o3Gay 47AS was epitaxially grown on semi-insulating InP stnéite by
MBE. Fig. 14 shows Ga 3d/In 4d/As 3d core levadm. In as-received sample, GaOx, InOx
and AsOx were grown. After HCI wet cleaning, aditime oxides were reduced and As-As
bonding appeared. After HCI cleaning and ultrahighuum anneal at 400 in SRPES chamber,
all native oxides and also surface As-As were goNext, we investigated interface property
after ALD process. We deposited 10nm-thickbli@tentionally on native oxides of InGaAs to
know how native oxides will change after ALD. Thea etched back Hf{by dilute HF in Fig.
15. Then we scan indeed the interface of #AfiaAs. Fig. 16 shows Ga 3d/In 4d/As 3d core
level spectra of Hf@InGaAs and all native oxides were reduced andfexte As-As bonding
appeared, which is similar to surface cleaningh@dAs. Self-cleaning phenomenon is probably
attributed to highly reactive chemical process high formation free energy of native oxides,
tabulated in Table. 1. Fig. 17 show the crossi@eat TEM images of native oxides and HfO
on InGaAs. Native oxide was clearly thinned dowiteraALD from 2nm to less than 1nm. Fig.



18, 19 shows C-V and |-V characteristics of HH@GaAs. There was no significant frequency

dispersion and hysteresis observed. Finally we ed¢imated band offset of HfhGaAs. Fig.

20 and 21 show valence band spectra and O 1s etwmsgyspectrum, respectively. Fig. 22

summarizes the band offsets and conduction basétoffas estimated to be 1.84eV. Therefore
HfO2 has sufficiently high conduction band offsetias suitable for NMOSFET operation.
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Fig. 1 GeQ thickness as a function of oxidatiéid- 2 Ge 3d core level spectra of plasig. 3 Ahrrenius plotting of oxidation rate of
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Fig. 7 C-V characteristics of Fig. 8 EOT versus XPS physical oxide Fig. 9 Inteface state density in upper Ge
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Fig. 20 (a) Ga 3d/In 4d/Hf 4f spectrum after
and before etch-back. (b) VB spectrum after

spectrum of Hf@InGaAs.
and before etch-back.

Fig. 21 Oxygen 1s energy loss
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Fig. 22 Experimentally constructed
Energy band diagram of H#InGaAs.



