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Overall Objectives

» Characterize toxicity of current and emerging
nanoparticles (NP) & NP byproducts

» Develop new rapid methodologies for assessing
and predicting toxicity
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ESH Metrics and Impact

1. Reduction in the use or replacement of ESH-problematic
materials

This project will evaluate the toxicity of various types of
nanoparticles utilized or considered for application in
semiconductor manufacturing, and the impact of
manufacturing steps on their toxicity. This information can
assist in selecting materials which are candidates for
replacement or use reduction.

2. Reduction in emission of ESH-problematic material to
environment
The knowledge gained can be utilized to modify the
manufacture of nanoparticles so that they have a lowered
toxicity and thus a lowered environmental impact.
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Surface Physical Characterization

Hypothesis: The size and size distribution of
nanoparticles intrinsically makes them more
adsorptive to external chemicals, and these
surface molecules lead to the observed toxic
effects of nanoparticles on cells.
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Surface Physical Characterization

» Particle size distribution (dynamic light scattering)
» Specific area (area/volume or area/mass of NP)
» Active site density; site energetics

» Physical adsorption vs chemical adsorption

» Ability of the surface to concentrate bulk contaminants
(sekctive adsorption)

> Retention of contaminants
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Surface Physical Characterization

Objective: determine surface ability to concentrate and retain bulk
contaminants. Key parameters are specific area, active site density, and
surface energetics for selective adsorption
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Experimental Method & Typical Results
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Comparison of Surface Activity of
Different NP Materials

Experimental data using moisture adsorption on 100 nm NPs
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Contamination retention is compound dependent: highest for Ce{and

lowest for HfO,; adsorption on CeQ, seems to be strong chemisorption
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NPs Rdention of Contaminants

Dynamics of Moisture Desorption
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Contamination retention of NPs is size dependent (smaller

NPs show higher retention)
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Surface Characterization

Particle Adsorption Desorption| Active Site Adsorption
Size Rate Coeff. |Rate Coeff] Density Capacity
dp ka kd SO CsO
(nm) (cm® mol1s?) (s (mol/cn?) (mol/cn??)
HfO, 20 3.30E+08 2.4 7.00E-10 6.56E-10
100 8.00E+08 0.8 2.50E-10 2.48E-10
HfO,
Sio, 20 5.30E+08 360 2.00E-08 2.74E-09
CeQ, 20 3.00E+08 1 8.75E-10 8.49E-10

Small HfO, particles adsorbed contaminants more energetically than larger particles

(higher activation energy)

Small particles have highercapacity for adsorption and retention of secondary
contaminants
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Fractionation of CeQ, by Centrifugation

Fractioning CeO , 2g/L Eppendorf Centrifuge 4500 rpm
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Role Surfactant Conc. on CeQNP Size

Intensity Based Particle Size Averages in Water
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Impact Biological Media on NP Dispersions

Intensity Based Particle Size Averages in Water (DLS)

(units = nm)
MEDIUM MATERIAL Comment
HfO, CeO,
MQ Water 359 £ 12 1741 £ 275
MQ Water + dispex 1382 209 £ 25
MTT 284 = 2 MTT = mitochondrion toxicity test medium
HBSS 3242 + 270 HBSS = Hanks' Balanced Salt Solutions
DMEM = Dulb 's Modified Eagl
DMEM 593 + 252 Medium (+2uSKeI§§?nso Hocgg) "o
Microtox 901 * 406 236 £21
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Surface Chemical Characterization

The University of Washington has a strong campus
resource facility permitting us to perform state-of-the-art
nanoparticle surface analysis. Instrumentation that is
available for this purpose includes:

» Electron spectroscopy for chemical analysis (ESCA)
e Secondary ion mass spectrometry (SIMS)

« Surface plasmon resonance (SPR)

o Atomic force microscopy (AFM)

o Sum Frequency Generation (SFG)

o Attenuated Total Reflectance IR (ATR-IR)
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Secondary lon Mass Spectrometry (SIMS)
Time-of-flight (ToF) SIMS; Statlc SIMS

* Probably the most information-
rich of the modern surface
analysis methods -
 Various organic/inorganic
contaminants detected on the
surface of HfO, NPs I Cortarintn ayer
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Nanoparticle Impurities — ToF SIMS

Positive Spectra Impurities

D) Ref NP1 NP2 NP3
Micron 20 nm 1-2 nm 100 nm

27 Al + + +
28 CH,N + ++ ++
30 CH,N + + +
40 Ca ++ +
45 C,H,O ++ ++ +
46 C,H,O + + +
52 C,H.N + +
55 Fe + +
58 Ni -

78 C,HO, +

90 Zr ++ + +
118 C.H;,NO, + + +
135 C,H,,0 ++ ++ +
161 C,,H,;50 ++ +++ +

“+” represents presence of listed fragment. “++” and “+++” are used to indicate relative amounts of listed
fragments within row and cannot be used to compare rows one to another.
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Nanoparticle Impurities — ToF SIMS

Negative Spectra Impurities

19 F +++ + ++ ++
20 CN + ++ +
31 P +
35 Cl +++ + + ++
47 PO + ++
51 ClO +
59 C,H;0, + ++
78 C,H,OF +
78.96 PO, +
78.92 OBr + ++
81 81Br + ++
104 C;HgN,O, +
127 | +
205 C;;H NO +

“+” represents presence of listed fragment. “++” and “+++” are used to indicate relative amounts of listed
fragments within row and cannot be used to compare rows one to another.
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Surface Characterization
Summary/Preliminary Conclusions

NP2
I=Z'nm
Light Organics (<100 MW) + + +
Heavy Organics (>100 MW) +
Silicon + ¥
Chlorine + +
Bromine +
Rare Earth Metals + + +
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CatecholTreated CeQ XPS Spectra
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Sodium, carbon, cerium and oxygen were observed in the spectrum
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CeO,_Core Level XPS Spectra Comparison
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Ce 3d core level photoemission spectra
from (A) CeO , (111), (B) Ce (lll) oxide*

* D.R. Mullins, S.H. Overbury, D. R. Huntley. Surface Science 409 (1998) 307-319.
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Surface Chemistry Results and Future Plans

« Our central hypothesis about the presence of surface
contaminant species and high surface adsorptiveness of
these nanoparticles is supported by our data.

. éomparison between Ce3d photoemission spectra of
catechol treated CeQ and literature suggests that sample is
In Ce4+ state.

e It has been shown in the literature that X-ray emission
might have an effect on the oxidative state of the sample.

 In order to find the oxidative state of a pristine sample, the
effect of x-ray on CeQ nanopatrticles should be
Investigated.
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Toxicity Assessment and Prediction

Objectives

« Establish role for reactive oxygen species (ROS) and
oxidative stress as a potential marker for NP toxicity
assessment

» Develop predictable models of toxicity based on physi€o
chemical properties elucidated by advanced surface
analysis techniques

« Validate toxicity assessments and predictions with oem
skin cultures (and advanced lung cultures)
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Materials

e Nanoparticles
Hafnium Oxide (HfQ), immersion lithography
Silica Oxide (SiQ), CMP
Ceria Oxide (CeQ), CMP

Others (ALO,, carbon and germanium- nanotubes, quantumetiots

* Biological targets

Human skin cell line (HaCat)

Human lung epithelial cell line (16HBE140-)

Human foreskin rafted organ culture (ROC)

Bacterium Vibrio fischeri) Microtox test

Others (methanogens, bacterial cultures, yetakst
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HfO, 3 ppm HfO, 300 ppm HFO, 2000 ppm

lee calcein AM) Dead: ethidium homodimer-1

Methods
 Main Toxicity Tests Utilized

Live/Dead Assay withHaCat Skin Cell Line (HaCat) I A~
N o Q"

Mitochondrial Toxicity test (MTT) (reter cellsy— DH”’“{Z% e 7

el Yoapes

Microtox (Vibrio fischeri) 3-(4.5-Dimethyithiazol24)-25  purpe formaza

diphenyltetrazolium bromide

J PURFLE

Methanogenic Activity

Chemical: Reactive Oxygen Species (ROS) Production

Detection of fluorescent ROS-sensitive dye

Fluorescence
fluorescent

spectrometer
L 4
esterase H G0 ROS
= cl (=] I
HO * . HY O OH
2',7-dichlorodihydrofluorescein 2',7-dichlorodihydrofluorescein 2',7-dichlorofluorescin (DCF)

diacetate (DCFH-DA) (DCFH)
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Batch

Batch 1
Batch 2
Batch 3

Micron

Measured

360
224
169
6000

Results on HIG,

Four distinct batches of hafnium oxide tested. Example Live/Dead test
(HaCat skin cells)
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Results on CeQ

Cerium oxide (MTI, “20 nm”). Example Microtox Test
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Results on CeQ

Cerium oxide (MTI, “20 nm”). Example Live/Dead with Dispex

Phosphate Buffer Saline Medium with Dispex
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Results on Mn,O,

Manganese Oxide (SSNano, “40-60 nm”). Example Microtox with Dispex
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Hypothesis ROS
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DCF (uM)

Chemical Production ROS

Ce02 (MTI, “20 nm”")

° Results indicate
that the oxidation
of L Dopa by

e CeO2 + L Dopa CeO2 NP
produces ROS.
Direct reaction of

8 CeO2 with
dissolved oxygen
Buffer only and water does
4 1 not produce ROS
CeO2 only L Dopa only
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DCF (uM)

Chemical Production ROS

Mn203 SSNano “40-60 nm”).

25

Theoretical maximum production

7.1 L7 1 TR

Mn203 only
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Buffer only
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L Dopa only

Hours
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Results indicate
that the
interaction of
Mn203 NP with
water and
dissolved oxygen
causes the
formation of
ROS. L Dopa
inhibits the
formation of ROS
by Mn203
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Correspondence ROS Versus Inhibition

B Nanoparticles alone @ Nanoparticles + L dopa

ROS assay

DCF uM/h
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Development New Technigues

New dye-free techniques that are less prone to interferences

 XCELLigence based on measuring impedance

Effects of Batch 1 HfOz
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 Wound healing assay, based on time to close scrape wound
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Development New Technigues

New dye-free techniques that are less prone to interferences (continued)

02 uptake assay for yeast and bacterial cells

Oxygen (mols)
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Preliminary Conclusions

» HfO2, ZrO2 and CeO2 LD Microtox: Methanog
- . 50% death 50% inhib 50% inhib
NPs mild to no toxicity. i
-------------------- mg/L --------------mmmm -
Higher Toxicity of Batch 1 HfO2 :
may be due to chemical HIO2 >2000 3000 >2500
contamination (from synthesis) CeO?2 2500" >300" >1000
ZrO2 >1000"

"batch3  *with dispersant

 NPs producing ROS directly in water most toxic.
Chemical ROS production indicative of NP toxicity

Mn,O,  50% IC microtox = 70 mg/L
Fe,O, 50% IC microtox = 500 mg/L

Fe 50% IC microtox = 500 mg/L
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Industrial Interactions and
Technology Transfer

ISMI-Sematech (Steve Trammell, Laurie Beu)
AMD (Reed Content)
IBM (Arthur T. Fong)

Intel (Steve W. Brown, Paul Zimmerman, Mansour
Moinpour)
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Future Plans

Next Year Plans

* Fractionation of CeO2 for toxicity study size fractions
» Biochemical indicators of oxidative stress
» Complete development of new non-dye based techniques

Long-Term Plans

» Rapid screening protocols of for assessing NP toxicity
» Toxicity to organ models
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Publications, Presentations

 Brownbag presentation:Nanoparticle Interaction with Biological
Wastewater Treatment Processes, Water Sustainability Program,
Phoenix, Arizona Jan 2@, 2010 at Arizona Cooperative Extension

 Sierra-Alvarez, R. 2009. Toxicity characterization of HfQ
nanoparticles. SRC/Sematech Engineering Research Center for
Environmentally Benign Semiconductor Manufacturing Teleseminar
Series. August 6.

« Boitano, S. 2009. Measuring cytotoxicity of nanoparticles in human
cells. SRC/Sematech Engineering Research Center for Environmentally
Benign Semiconductor Manufacturing Teleseminar Series. Sept. 17.

e Ratner, B. 2009. Static SIMS: A Powerful Tool to Investigate
Nanoparticles and Biology. SRC/Sematech Engineering Research
Center for Environmentally Benign Semiconductor Manufacturing
Teleseminar Series. May 14.
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