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Overall ObjectivesOverall Objectives

� Characterize toxicity of current and emerging 
nanoparticles (NP) & NP byproducts 

� Develop new rapid methodologies for assessing 
and predicting toxicity
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ESH Metrics and ImpactESH Metrics and Impact
1. Reduction in the use or replacement of ESH-problematic 

materials

This project will evaluate the toxicity of various types of 
nanoparticles utilized or considered for application in 
semiconductor manufacturing, and the impact of 
manufacturing steps on their toxicity. This information can 
assist in selecting materials which are candidates for 
replacement or use reduction.

2. Reduction in emission of ESH-problematic material to 
environment

The knowledge gained can be utilized to modify the 
manufacture of nanoparticles so that they have a lowered 
toxicity and thus a lowered environmental impact.
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Surface Physical CharacterizationSurface Physical Characterization

Hypothesis: The size and size distribution of 
nanoparticles intrinsically makes them more 
adsorptive to external chemicals, and these 
surface molecules lead to the observed toxic 
effects of nanoparticles on cells. 
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� Particle size distribution (dynamic light scattering)

� Specific area (area/volume or area/mass of NP)

� Active site density; site energetics

� Physical adsorption vs chemical adsorption

� Ability of the surface to concentrate bulk contaminants 
(selective adsorption)

� Retention of contaminants

Surface Physical CharacterizationSurface Physical Characterization
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Surface Physical CharacterizationSurface Physical Characterization
Objective: determine surface ability to concentrate and retain bulk 
contaminants.  Key parameters are specific area, active site density, and 
surface energetics for selective adsorption 
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Experimental Method & Typical ResultsExperimental Method & Typical Results

Time, (hrs)

• Temperature-Programmed 
Interaction (TPI) for measuring 
site energetics
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• Physical adsorption of inert 
adsorbent (similar to BET 
isotherm) for area measurement

• Chemical adsorption of reactive 
adsorbent for measuring site 
density
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Comparison of Surface Activity of Comparison of Surface Activity of 
Different NP MaterialsDifferent NP Materials

Contamination retention is compound dependent: highest for CeO2 and 
lowest for HfO2; adsorption on CeO2 seems to be strong chemisorption

Experimental data using moisture adsorption on 100 nm NPs
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Contamination retention of NPs is size dependent (smaller 
NPs show higher retention) 
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• Small HfO2 particles adsorbed  contaminants more energetically than larger particles 
(higher activation energy) 

• Small particles have higher capacity for adsorption and retention of secondary 
contaminants



SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Fractionation of CeOFractionation of CeO22 by Centrifugationby Centrifugation

Fractioning CeO 2 2g/L Eppendorf Centrifuge 4500 rpm
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Role Surfactant Conc. on  CeORole Surfactant Conc. on  CeO22 NP SizeNP Size
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Impact Biological Media on NP DispersionsImpact Biological Media on NP Dispersions
Intensity Based Particle Size Averages in Water (DLS) 

(units = nm)

MATERIAL

MQ Water

MQ Water + dispex

MTT

HBSS

DMEM

Microtox

359 ± 12

138 ± 2

284 ± 2

3242 ± 270

593 ± 252

901 ± 406

MEDIUM

1741 ± 275

209 ± 25

236 ± 21

HBSS = Hanks' Balanced Salt Solutions 

DMEM = Dulbecco's Modified Eagle 
Medium (+25KBS, no HCO3)

MTT = mitochondrion toxicity test medium

HfO2 CeO2

Comment
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Surface Chemical CharacterizationSurface Chemical Characterization

The University of Washington has a strong campus 
resource facility permitting us to perform state-of-the-art 
nanoparticle surface analysis. Instrumentation that is 
available for this purpose includes:

• Electron spectroscopy for chemical analysis (ESCA)
• Secondary ion mass spectrometry (SIMS)
• Surface plasmon resonance (SPR)
• Atomic force microscopy (AFM)
• Sum Frequency Generation (SFG)
• Attenuated Total Reflectance IR (ATR-IR)



SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Secondary Ion Mass Spectrometry (SIMS)Secondary Ion Mass Spectrometry (SIMS)
TimeTime--ofof--flight (flight ( ToFToF) SIMS; Static SIMS) SIMS; Static SIMS

• Probably the most information-
rich of the modern surface 
analysis methods

• Positive and negative spectra can 
be used to identify impurities 
including metals from fabrication 
or organics from unidentified 
sources

• Various organic/inorganic 
contaminants detected on the 
surface of HfO2 NPs
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NanoparticleNanoparticle Impurities Impurities –– ToFToF SIMSSIMS

“+” represents presence of listed fragment.  “++” and “+++” are used to indicate relative amounts of listed 
fragments within row and cannot be used to compare rows one to another.  

mass ID Ref
Micron

NP1
20 nm

NP2
1-2 nm 

NP3
100 nm

27 Al + + +

28 CH2N + ++ ++

30 CH4N + + +

40 Ca ++ +

45 C2H5O ++ ++ +

46 C2H6O + + +

52 C3H2N + +

55 Fe + +

58 Ni +

78 C2H6O3 +

90 Zr ++ + +

118 C5H12NO2 + + +

135 C9H11O ++ ++ +

161 C11H13O ++ +++ +

Positive Spectra Impurities
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Negative Spectra Impurities

mass ID Ref
Micron

NP1
20 nm

NP2
1-2 nm 

NP3
100 nm

19 F +++ + ++ ++

26 CN + ++ +

31 P +

35 Cl +++ + + ++

47 PO + ++

51 ClO +

59 C2H3O2 + ++

78 C3H7OF +

78.96 PO3 +

78.92 79Br + ++

81 81Br + ++

104 C3H8N2O2 +

127 I +

205 C13H19NO +

Nanoparticle Impurities – ToF SIMS

“+” represents presence of listed fragment.  “++” and “+++” are used to indicate relative amounts of listed 
fragments within row and cannot be used to compare rows one to another.  
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Surface Characterization Surface Characterization 
Summary/Preliminary ConclusionsSummary/Preliminary Conclusions

ImpurityImpurity RefRef
MicroMicro

NP1NP1
20 nm20 nm

NP2NP2
11--2 nm2 nm

Light Organics (<100 MW)Light Organics (<100 MW) ++ ++ ++

Heavy Organics (>100 MW)Heavy Organics (>100 MW) ++

SiliconSilicon ++ ++

ChlorineChlorine ++ ++

BromineBromine ++

Rare Earth MetalsRare Earth Metals ++ ++ ++

SIMS Analysis
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CatecholCatecholTTreated CeOreated CeO22 XPS SpectraXPS Spectra
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Sodium, carbon, cerium and oxygen were observed in the spectrum
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Ce 3d core level photoemission spectra 

from (A) CeO 2 (111), (B) Ce (III) oxide*

* D.R. Mullins, S.H. Overbury, D. R. Huntley. Surface Science 409 (1998) 307-319.

High resolution XPS spectra of catechol treated CeO2

CeOCeO22 Core Level XPS Spectra ComparisonCore Level XPS Spectra Comparison
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Surface Chemistry Results and Future PlansSurface Chemistry Results and Future Plans

-

• Our central hypothesis about the presence of surface 
contaminant species and high surface adsorptiveness of 
these nanoparticles is supported by our data.

• Comparison between Ce3d photoemission spectra of 
catechol treated CeO2 and literature suggests that sample is 
in Ce4+ state.

• It has been shown in the literature that X-ray emission 
might have an effect on the oxidative state of the sample.

• In order to find the oxidative state of a pristine sample, the 
effect of x-ray on CeO2 nanoparticles should be 
investigated. 
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Toxicity Assessment and PredictionToxicity Assessment and Prediction

ObjectivesObjectives

• Establish role for reactive oxygen species (ROS) and 
oxidative stress as a potential marker for NP toxicity 
assessment

• Develop predictable models of toxicity based on physico-
chemical properties elucidated by advanced surface 
analysis techniques

• Validate toxicity assessments and predictions with organ 
skin cultures (and advanced lung cultures) 
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MaterialsMaterials
• Nanoparticles

• Biological targets

Hafnium Oxide (HfO2), immersion lithography

Silica Oxide (SiO2), CMP

Ceria Oxide (CeO2), CMP

Others (Al2O3, carbon and germanium- nanotubes, quantum dots etc)

Human skin cell line (HaCat)

Human lung epithelial cell line (16HBE14o-)

Human foreskin rafted organ culture (ROC)

Bacterium (Vibrio fischeri) Microtox test

Others (methanogens, bacterial cultures, yeast etc)



SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

MethodsMethods
• Main Toxicity Tests Utilized

• Chemical: Reactive Oxygen Species (ROS) Production

Live/Dead Assay with HaCat Skin Cell Line (HaCat)

Detection of fluorescent ROS-sensitive dye

Microtox

Mitochondrial Toxicity test (MTT) (ureter cells)

3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide

purple formazan

Live: calcein AM) Dead: ethidium homodimer-1

(Vibrio fischeri)

2′,7′-dichlorodihydrofluorescein 
diacetate (DCFH-DA)

2′,7′-dichlorodihydrofluorescein 
(DCFH)

esterase ROS

2′,7′-dichlorofluorescin (DCF)

fluorescent
Fluorescence 
spectrometer

Methanogenic Activity
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Results on HfOResults on HfO22

Four distinct batches of hafnium oxide tested. Example Live/Dead test 
(HaCat skin cells)

Batch 1 Batch 2

Batch 3Micron

Batch 1

Batch 2

Batch 3

Micron

Measured 

------ avg size (nm) ------

360

Reported 

224

169

6000

Batch 

20

2

100

< 44,000

Manufact. 
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Results on CeOResults on CeO22

Cerium oxide (MTI, “20 nm”).Example Microtox Test
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Results on CeOResults on CeO22

Cerium oxide (MTI, “20 nm”). Example Live/Dead with Dispex

Phosphate Buffer Saline Medium with Dispex
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Results on MnResults on Mn22OO33

Manganese Oxide (SSNano, “40-60 nm”). Example Microtox with Dispex
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Hypothesis ROSHypothesis ROS

Cells

Enzymatic
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Chemical Production ROSChemical Production ROS

CeO2 (MTI, “20 nm”)

CeO2 only

Buffer only

L Dopa only

CeO2 + L Dopa

Results indicate 
that the oxidation 
of L Dopa by 
CeO2 NP 
produces ROS. 
Direct reaction of 
CeO2 with 
dissolved oxygen 
and water does 
not produce ROS 
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Chemical Production ROSChemical Production ROS

Mn2O3 SSNano “40-60 nm”). 
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Correspondence ROS Versus InhibitionCorrespondence ROS Versus Inhibition

ROS assay

Microtox
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Development New TechniquesDevelopment New Techniques

• xCELLigence based on measuring impedance

New dye-free techniques that are less prone to interferences

• Wound healing assay, based on time to close scrape wound

Time:

0 ppm

0 h 0.5 h 1.0 h 1.5 h 2.0 h

250 ppm

Batch 1 
HfO2

Lung 
Cells

16HBE14o-
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Development New TechniquesDevelopment New Techniques

• O2 uptake assay for yeast and bacterial cells

New dye-free techniques that are less prone to interferences (continued)
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Preliminary ConclusionsPreliminary Conclusions

• HfO2, ZrO2 and CeO2 
NPs mild to no toxicity. 

• NPs producing ROS directly in water most toxic. 
Chemical ROS production indicative of NP toxicity

Higher Toxicity of Batch 1 HfO2 
may be due to chemical 
contamination (from synthesis)

Mn2O3

HfO2

CeO2

ZrO2

MicrotoxL/D Methanog

50% death 50% inhib

3000

-------------------- mg/L -----------------------

50% inhib

>300
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>2500>2000
*

*batch3

2500 >1000**

** with dispersant

**

**

Fe2O3

Fe0

50% IC microtox = 70 mg/L
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50% IC microtox = 500 mg/L
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Industrial Interactions and Industrial Interactions and 
Technology TransferTechnology Transfer

• ISMI-Sematech (Steve Trammell, Laurie Beu)

• AMD (Reed Content)

• IBM (Arthur T. Fong)

• Intel (Steve W. Brown, Paul Zimmerman, Mansour
Moinpour)
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Future PlansFuture Plans

Next Year Plans
• Fractionation of CeO2 for toxicity study size fractions
• Biochemical indicators of oxidative stress 
• Complete development of new non-dye based techniques

Long-Term Plans
• Rapid screening protocols of for assessing NP toxicity
• Toxicity to organ models
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Publications, PresentationsPublications, Presentations
• Brownbag presentation: Nanoparticle Interaction with Biological 

Wastewater Treatment Processes, Water Sustainability Program, 
Phoenix, Arizona Jan 20th, 2010 at Arizona Cooperative Extension

• Sierra-Alvarez, R. 2009. Toxicity characterization of HfO2
nanoparticles. SRC/Sematech Engineering Research Center for 
Environmentally Benign Semiconductor Manufacturing Teleseminar 
Series. August 6.

• Boitano, S. 2009. Measuring cytotoxicity of nanoparticles in human 
cells. SRC/Sematech Engineering Research Center for Environmentally 
Benign Semiconductor Manufacturing Teleseminar Series. Sept. 17.

• Ratner, B. 2009. Static SIMS: A Powerful Tool to Investigate 
Nanoparticles and Biology. SRC/Sematech Engineering Research 
Center for Environmentally Benign Semiconductor Manufacturing 
Teleseminar Series. May 14.


