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ObjectivesObjectives

• Simplify multistep subtractive processing used in 
microelectronic device manufacturing 
– Develop new processes that can be integrated into current 

devices flows
– Minimize water, energy, chemical, and materials consumption
– Reduce costs

• Focus on high-k gate stack testbed
– Fabricate low defect high-k/semiconductor interfaces
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ESH Metrics and Impact: Additive ProcessingESH Metrics and Impact: Additive Processing
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ESH Metrics and Impact: Cost ReductionESH Metrics and Impact: Cost Reduction

• Integration of selective deposition processes into current front end 
process flow could reduce ~16% of the processing costs
– Calculation based on Sematech cost model

– Eliminate eight processing steps from the gate module 
– Tool depreciation, tool maintenance, direct personnel, indirect 

personnel, direct space, indirect space, direct material, and indirect 
material were included

– Energy, waste disposal, and addition of two selective deposition steps 
were not included

• There is potential for greater ESH benefit due to minimized cost of 
raw materials and waste generated
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NoveltyNovelty

• Develop industrially feasible processes to activate and deactivate 
surfaces
– Significantly lower time scale

– Extend to metal and semiconductor surfaces

• Integrate selective deposition steps at carefully chosen points in the 
CMOS process flow
– Realize ESH and technical performance gains

• Quantify costs associated with selective deposition steps to refine 
industry models
– Account for energy and waste disposal

– More accurate prediction of the cost model 
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• Grow high-k films on semiconductors by 
activation and deactivation of surface sites

• Activation
– Utilize surface chemistries to activate 

substrates for high-k film growth
– Halogen, amine terminations

• Deactivation 
– Hydrophobic self assembled monolayer 

(SAM) prevents adsorption of H2O

• Model systems
– Si, Ge, and III-V substrates
– High-k films by atomic layer deposition 

(ALD)
• Al2O3

• TiO2

Methods and ApproachMethods and Approach
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Clustered Reactor ApparatusClustered Reactor Apparatus
• In situ cleaning, high-k deposition, and surface analysis enables studies 

of surfaces without atmospheric contamination

– Important for highly reactive substrate such as III-V materials
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• Break overall reaction into two half reactions and run one at a 
time to achieve self-limiting growth
– Surfaces exposed to sequential pulses of metal and oxygen 

precursors to deposit oxide

Atomic Layer Deposition of HighAtomic Layer Deposition of High--k Filmsk Films
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ALD Reaction MechanismALD Reaction Mechanism

• Factors governing the selective deposition of high-
k film 
– Surface conditioning 
– Precursor selection 
– Deposition conditions 

• Hydroxylated surface promotes high-k growth on Si

• Two half reaction in TiO2 deposition

TiCl4(g) +  –OH � –O-TiCl3 + HCl(g)

2 H2O(g) +  –O-TiCl3 � –O-Ti-OH + 3 HCl(g)

• Deposition mechanism using TiCl4 precursor could 
be used as a model for HfCl4 precursor
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Si(100) highSi(100) high--k deposition: ALD of TiO2k deposition: ALD of TiO2

• Demonstrated TiO2 deposition on hydroxylated
Si(100)

– Residual Cl present on surface

– Si 2p peak still visible with ~9 Å thick TiO2 layer

Piranha etch
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Deactivation using SAM ChemicalsDeactivation using SAM Chemicals

C21H43O3SiOctadecyldimethoxysilane ODS

C4H14NSi2Tretramethydisilazane TMDS

C3H9ClSiTrimethylchlorosilane TMCS

C8H7F13SiTridecafluoro-1,1,2,2-
tetrahydrooctylsilane FOTS

C32H67ClSiTriacontyldimethylchlorosilane TDCS

C30H61Cl3SiTriacontyltrichlorosilane TTS

C18H37Cl3SiOctadecyltrichlorosilane OTS

StructureFormulaSAM molecules



13SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

• High quality OTS layer after only 30 minutes (not 2hrs)
– 26Å
– 110°water contact angle
– Smaller standard deviation after 48hrs in OTS than 30min in OTS

• Chloroform rinse was more effective than IPA and Methanol for OTS and 
TTS

• Polymerization of the SAM molecule was observed due to reaction with 
adsorbed water producing large deviation in the water contact angle

OTS Thickness vs Rinsing Method
30 minutes in 10mM OTS in toluene
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OTS Water Contact Angle vs Rinsing Method
30 minutes in 10mM OTS in toluene
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Surface Deactivation: SAM formationSurface Deactivation: SAM formation
Water Contact Angle vs. Drying Method

10mM solution of TTS in Toluene for 48 hrs.
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Surface Deactivation: ResultsSurface Deactivation: Results

• Reduced TiO2 growth rate by up to a factor of 50 ± 5
– Data spread primarily due to sample variation within each solution batch

• Potential SAM defects
– Water in/on SAM
– Unblocked hydroxyl groups
– Exposed Si-O bridges

• Improve deactivation by performing nitric acid etch or SC1 cleaning before 
SAM formation
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Surface Deactivation: Effect of WaterSurface Deactivation: Effect of Water

TiO2 Thickness After 50 Cycles
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• SAM is equally stable to 
subsequent water pulses during 
an ALD process

– No change in Ti due to additional 
20 second water pulse before 
ALD
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Surface Deactivation / ActivationSurface Deactivation / Activation

• Improve SAM 
deactivation capability 
by

– Replacing piranha 
etch step with a 
nitric acid or SC1 
cleaning
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SAM Vapor Phase Delivery: ReactorSAM Vapor Phase Delivery: Reactor

• Vacuum vessel designed to optimize vapor phase delivery of SAM molecules
• Control variables: 

– Vapor pressure
– Exposure time
– Temperature of substrate, reactor walls, and SAM solutions
– SAM and water vapor delivery method

• Individually  
• Simultaneously
• Alternately with N2 purge between pulses
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SAM Vapor Phase Delivery: ResultsSAM Vapor Phase Delivery: Results

Water Contact Angle vs. Vapor Exposure Time 
10min OTS, 30sec H2O...
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SAM Thickness vs. Vapor Exposure Time
10min OTS, 30sec H2O...
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• 95°water contact angle obtained after only 40 min of 
vapor OTS exposure

– 1 cycle = 10min OTS/N2 purge/pump/30s water/N2
purge/pump

– Without water pulses maximum water contact angle was only 
65°

Sample Prep
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ConclusionsConclusions
• Growing the SAM layer on nitric acid etched and SC1 cleaned samples 

eliminates many of the defects found in SAM layer formed on piranha etch 
samples

• 95°water contact angle obtained after only 40 min of vapor OTS exposure
– SC1 cleaning of the chemical oxide layer has aided in SAM attachment to the 

surface both in vapor phase and liquid phase

• SAM layer is stable during the ALD water pulse process
– TiCl4 is the nucleating precursor
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Future WorkFuture Work
• Investigate vapor phase ozone and gas phase HF/vapor treatment to 

increase and control hydroxylation of oxide surfaces 

• Characterize SAM layers
– Thermal stability for deactivation

– Durability for large numbers of ALD cycles 
– Chemical bonding between SAMs and surface

– Degradation and repair of SAMs layers

• Extend deactivation study to Al2O3, TiO2, HfO2 surfaces

• Optimize vapor phase delivery of SAM molecules
– Pulse and purge both water and SAM molecules as opposed to sealing vapor in 

a reactor for extended time

• Investigate optimized selective deposition method on III-V semiconductor 
surfaces


