Low ESH-impact Gate Stack Fabrication

by Selective Surface Chemistry

Project 425.026

Shawn Miller and Anthony Muscat Department of Chemical and Environmental Engineering University of Arizona, Tucson, AZ 85721

Industrial partners: Sematech ASM

Low ESH-impact Gate Stack Fabrication

by Selective Surface Chemistry

(Task Number: 425.026)

<u>**PI:**</u>

• Anthony Muscat, Chemical and Environmental Engineering, UA

Graduate Students:

• Shawn Miller, MS candidate, Optical Science and Engineering, UA

Cost Share (other than core ERC funding):

• ASM

Industrial Interactions and Technology Transfer • Biweekly project updates to ASM

Mentors

• Joel M. Barnett, SEMATECH

• Willy Rachmady, Intel

Objectives

- Simplify multistep subtractive processing used in microelectronic device manufacturing
 - Develop new processes that can be integrated into current devices flows
 - Minimize water, energy, chemical, and materials consumption
 - Reduce costs
- Focus on high-k gate stack testbed
 - Fabricate low defect high-k/semiconductor interfaces

ESH Metrics and Impact: Additive Processing

ESH Metrics and Impact: Cost Reduction

- Integration of selective deposition processes into current front end process flow could reduce ~16% of the processing costs
 - Calculation based on Sematech cost model
 - Eliminate eight processing steps from the gate module
 - Tool depreciation, tool maintenance, direct personnel, indirect personnel, direct space, indirect space, direct material, and indirect material were included
 - Energy, waste disposal, and addition of two selective deposition steps were not included
- There is potential for greater ESH benefit due to minimized cost of raw materials and waste generated

<u>Novelty</u>

- Develop industrially feasible processes to activate and deactivate surfaces
 - Significantly lower time scale
 - Extend to metal and semiconductor surfaces
- Integrate selective deposition steps at carefully chosen points in the CMOS process flow
 - Realize ESH and technical performance gains
- Quantify costs associated with selective deposition steps to refine industry models
 - Account for energy and waste disposal
 - More accurate prediction of the cost model

Methods and Approach

- Grow high-k films on semiconductors by activation and deactivation of surface sites
- Activation
 - Utilize surface chemistries to activate substrates for high-k film growth
 - Halogen, amine terminations
- Deactivation
 - Hydrophobic self assembled monolayer (SAM) prevents adsorption of H₂O
- Model systems
 - Si, Ge, and III-V substrates
 - High-k films by atomic layer deposition (ALD)
 - Al₂O₃
 - TiO₂

Clustered Reactor Apparatus

- In situ cleaning, high-k deposition, and surface analysis enables studies of surfaces without atmospheric contamination
 - Important for highly reactive substrate such as III-V materials

Atomic Layer Deposition of High-k Films

- Break overall reaction into two half reactions and run one at a time to achieve self-limiting growth
 - Surfaces exposed to sequential pulses of metal and oxygen precursors to deposit oxide

ALD Reaction Mechanism

- Factors governing the selective deposition of highk film
 - Surface conditioning
 - Precursor selection
 - Deposition conditions
- Hydroxylated surface promotes high-k growth on Si
- Two half reaction in TiO₂ deposition

 $TiCl_{4(g)} + -OH \rightarrow -O-TiCl_{3} + HCl_{(g)}$ $2 H_{2}O_{(g)} + -O-TiCl_{3} \rightarrow -O-Ti-OH + 3 HCl_{(g)}$

 Deposition mechanism using TiCl₄ precursor could be used as a model for HfCl₄ precursor

Si(100) high-k deposition: ALD of TiO2

- Demonstrated TiO₂ deposition on hydroxylated Si(100)
 - Residual CI present on surface
 - Si 2p peak still visible with ~9 Å thick TiO_2 layer

Deactivation using SAM Chemicals

SAM molecules	Formula	Structure
Octadecyltrichlorosilane OTS	C ₁₈ H ₃₇ Cl ₃ Si	Cl-Si Cl Cl
Triacontyltrichlorosilane TTS	C ₃₀ H ₆₁ Cl ₃ Si	$Cl \\ Cl - Si \\ Cl \\ Cl \\ CH_3$
Triacontyldimethylchlorosilane TDCS	C ₃₂ H ₆₇ CISi	
Tridecafluoro-1,1,2,2- tetrahydrooctylsilane FOTS	C ₈ H ₇ F ₁₃ Si	$-Si \xrightarrow{FF}FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$
Octadecyldimethoxysilane ODS	$C_{21}H_{43}O_3Si$	CH ₃ O CH ₃ -O-Si O CH ₃ CH ₃
Trimethylchlorosilane TMCS	C ₃ H ₉ CISi	$ \begin{array}{c} CH_{3} \\ CH_{3} - Si - Cl \\ CH_{3} \\ CH_{3} \end{array} $
Tretramethydisilazane TMDS	C ₄ H ₁₄ NSi ₂	$CH_{3}-Si-N -Si-CH_{3}$ $CH_{3} -Si-CH_{3}$ $CH_{3} -Si-CH_{3}$

- High quality OTS layer after only 30 minutes (not 2hrs)
 - 26Å
 - 110° water contact angle
 - Smaller standard deviation after 48hrs in OTS than 30min in OTS
- Chloroform rinse was more effective than IPA and Methanol for OTS and TTS
- Polymerization of the SAM molecule was observed due to reaction with adsorbed water producing large deviation in the water contact angle

Surface Deactivation: Results

- Reduced TiO_2 growth rate by up to a factor of 50 ± 5
 - Data spread primarily due to sample variation within each solution batch
- Potential SAM defects
 - Water in/on SAM
 - Unblocked hydroxyl groups
 - Exposed Si-O bridges
- Improve deactivation by performing nitric acid etch or SC1 cleaning before SAM formation

14

Surface Deactivation: Effect of Water

Surface Deactivation / Activation

- Improve SAM deactivation capability by
 - Replacing piranha etch step with a nitric acid or SC1 cleaning

SAM Vapor Phase Delivery: Reactor

- Vacuum vessel designed to optimize vapor phase delivery of SAM molecules
- Control variables:
 - Vapor pressure
 - Exposure time
 - Temperature of substrate, reactor walls, and SAM solutions
 - SAM and water vapor delivery method
 - Individually
 - Simultaneously
 - Alternately with N₂ purge between pulses

SAM Vapor Phase Delivery: Results

- 95° water contact angle obtained after only 40 min of vapor OTS exposure
 - 1 cycle = 10min OTS/N₂ purge/pump/30s water/N₂ purge/pump
 - Without water pulses maximum water contact angle was only 65°

Conclusions

- Growing the SAM layer on nitric acid etched and SC1 cleaned samples eliminates many of the defects found in SAM layer formed on piranha etch samples
- 95° water contact angle obtained after only 40 min of vapor OTS exposure
 - SC1 cleaning of the chemical oxide layer has aided in SAM attachment to the surface both in vapor phase and liquid phase
- SAM layer is stable during the ALD water pulse process
 - TiCl₄ is the nucleating precursor

Future Work

- Investigate vapor phase ozone and gas phase HF/vapor treatment to increase and control hydroxylation of oxide surfaces
- Characterize SAM layers
 - Thermal stability for deactivation
 - Durability for large numbers of ALD cycles
 - Chemical bonding between SAMs and surface
 - Degradation and repair of SAMs layers
- Extend deactivation study to Al_2O_3 , TiO_2 , HfO_2 surfaces
- Optimize vapor phase delivery of SAM molecules
 - Pulse and purge both water and SAM molecules as opposed to sealing vapor in a reactor for extended time
- Investigate optimized selective deposition method on III-V semiconductor surfaces

20