<u>Lowering the Environmental Impact of High-k and</u> <u>Metal Gate-Stack Surface Preparation Processes</u>

(Task Number: 425.028)

<u>**PIs:**</u>

- Yoshio Nishi, Electrical Engineering, Stanford University
- Srini Raghavan, Materials Science and Engineering, University of Arizona
- Bert Vermeire, Electrical Engineering, Arizona State University
- Farhang Shadman, Chemical Engineering, University of Arizona

Graduate Students:

- Gaurav Thareja, Electrical Engineering, Stanford University
- Kedar Dhane, Chemical Engineering, University of Arizona
- Davoud Zamani, Chemical Engineering, University of Arizona
- Shweta Agrawal, Materials Science and Engineering, University of Arizona
- Xu Zhang, Electrical Engineering, Arizona State University

Research Scientists:

- Jun Yan, Chemical Engineering, University of Arizona
- Junseok Chae, Electrical Engineering, Arizona State University

Cost Share (other than core ERC funding):

• \$50k from Stanford CIS

Objectives

- Development of non-fluoride based etch chemistries for hafnium based high-k materials
- Elimination of galvanic corrosion between metal gate and polysilicon during wet etching
- Significant reduction of water and energy (hot water) usage during rinse
- Determination of chemical and electrical characterization methodology for surface preparation of high k dielectric films.
- Validation of low resource-usage processes using Metal high-k device fabrication and electrical characterization

ESH Metrics and Impact

- Reduction in the usage of HF and HCl; development of environmentally friendly, nonfluoride based etch chemistries for hafnium-based high-k materials
- Significant reduction in water usage during rinse
- Significant reduction in energy (hot water) usage during rinse
- Reduction of rinse time leading to increase in throughput and decrease in resource usage

<u>Subtask 1: Environmentally Friendly Chemical</u> Systems for Patterning Silicates and Hafnium Oxide

BACKGROUND

- In the formation of high k- metal gate structures by the "gate first" process, etching of high k material after 'P-metal' removal to prepare the surface for 'N- metal' deposition is required. Additionally, selective etching of high k material with respect to SiO₂ is also needed
- Currently used chemical system for etching Hf based high-k materials is dilute HF containing HCl; however, these high k materials become very difficult to etch when subjected to a thermal treatment
- HF based systems appear to induce galvanic corrosion of polysilicon, which is in contact with metal gate materials; reducing the oxygen level of HF has been recommended to reduce corrosion

Materials and Experimental Procedures

- <u>Materials</u>
 - **300 mm ALD HfO₂ wafers:**
 - Provided by ASM
 - Film Thickness: ~ 230 Å

300 mm ALD HfSi_{0.74}**O**_{3.42} wafers:

- Provided by ASM
- Film Thickness: ~ 240 Å

- Experimental Procedures:
 - Wafer was cleaved into 2 x 3 cm pieces for testing
 - Cleaned by IPA, rinsed with DI water and dried by N₂
 - Etch rate determined from thickness measurements made by spectroscopic ellipsometer (J. A. Woollam Co.) at 5 different locations
 - Heat treatment and reduction tests were conducted in a tube furnace;
 - 50% N2 and 50% H2 gas mixture was used for reduction tests
 - Dilute HF was used for baseline etch rate measurements; ammonium hydroxide was tested as an alternate etchant

Baseline Etch Tests on ALD HfO₂ <u>in Dilute HF Solutions</u>

HF concentration (%)	Temperature (℃)	ER _{HfO2} (Å/min)	Selectivity ER _{HfO2} :ER _{SiO2}
0.01	25	1.5	4.8 : 1
0.1	25	4.1	2.2 : 1
1	25	27.6	0.5 : 1

 Better etch selectivity of HfO₂ (with respect to SiO₂) at low concentrations of HF---trend in line with literature data for MOCVD HfO₂

<u>Wet Etching of ALD HfSi_xO_y</u> <u>in Dilute HF Solutions</u>

HF concentration (%)	Temperature (℃)	Reduced in 50%H ₂ /50%N ₂	ER _{HfSixOy} (Å/min)	Selectivity ER _{HfSixOy} :ER _{SiO2}
0.01	25	No	2.2	7.1 : 1
0.1	25	No	23.2	12.6 : 1
1	25	No	328.4	5.3 : 1
0.1	400	No	23.8	12.9:1
0.1	400	Yes	22.8	12.4:1

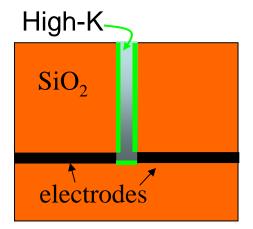
- Hafnium silicate etches at a higher rate than HfO₂ in dilute HF solutions
- Heat treatment in hydrogen does no affect the etch rate of hafnium silicate significantly

<u>Alternative Etch Chemistries for</u> <u>Hafnium Oxide and Silicate</u>

- Literature data indicates that dissolution of metal silicates such as copper silicates is possible in ammoniacal solutions with a pre-reduction treatment in H_2/N_2 or CO/CO_2
- First set of experiments carried out on hafnium oxide and silicate films exposed to $50\%H_2/50\%N_2$ at different temperatures for different duration
- Films subsequently immersed in ammonium hydroxide solutions

<u>Feasibility of Etching of HfO₂ and HfSi_xO_y</u> <u>in Ammonical Solutions Using a Pre-reduction</u> <u>Treatment</u>

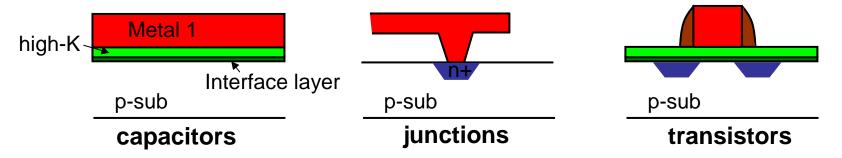
Reduction Temperature (°C)	400	200	100
Reduction Time (hr)	0.5	1	3
pH of Ammonium Hydroxide	9.95	13.8	
Time in Ammonium Hydroxide (hr)	1	21	
Etch Rate (HfO ₂ and HfSi _{0.74} O _{3.42})	insignificant		


Pre-reduction in H_2/N_2 mixture appears to be ineffective in making HfO₂ and HfSi_{0.74}O_{3.42} soluble in ammoniacal solutions.

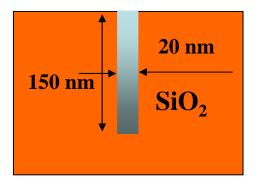
Subtask 2: Low-Water and Low-Energy New Rinse and Drying Recipes and Methodologies

BACKGROUND

- Formation of high-k metal gate structures requires cleaning of fine geometries containing materials not traditionally used by the semiconductor industry. Wet etching must be quenched at the appropriate time
- More single wafer tools are used for cleaning, rinsing and drying because of better yield. Optimization of cycle time is critical for throughput and reduced resource usage
- Elucidating rate-limiting mechanisms to make possible multi-stage, resource-efficient recipes requires in-situ and real-time measurements and accurate simulation capabilities
- Validation of low resource-usage processes for high-volume manufacturing using electrical test structures


Test Structures for Experimental Work

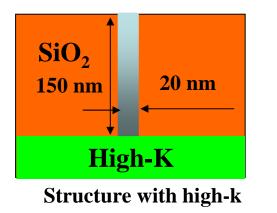
AC impedance of high aspect ratio feature to determine cleaning and drying kinetic parameters in-situ



Quartz Crystal Microbalance to determine etch rates and adsorption/desorption rates

Electrical test structures (capacitors, junctions, transistors) to evaluate impact of new recipes on performance

<u>Rinsing/Cleaning of Heterogeneous</u> <u>Nano- Structures</u>


Conventional Structure

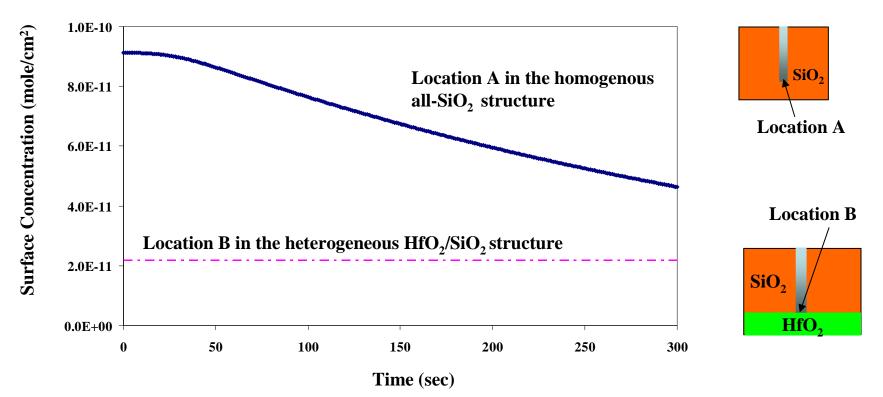
The introduction of high-k dielectric makes the surface structure heterogeneous. Rinse must clean both surfaces

A newly developed spin-rinse model was used to parametrically study the heterogeneous structure rinse.

Multi-component transport equations :

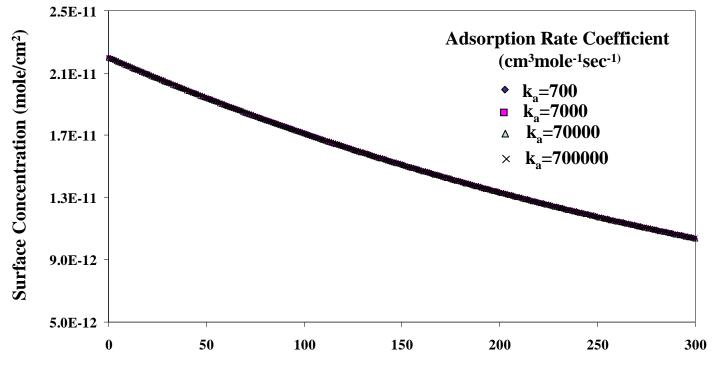
$$\frac{\partial C_{i}}{\partial t} = \nabla \cdot (D_{i} \nabla C_{i} + z_{i} F \mu_{i} C_{i} \nabla \varphi)$$

Surface adsorption and desorption:


 $\frac{\partial C_S}{\partial t} = k_a C_b (S_0 - C_S) - k_d C_S$

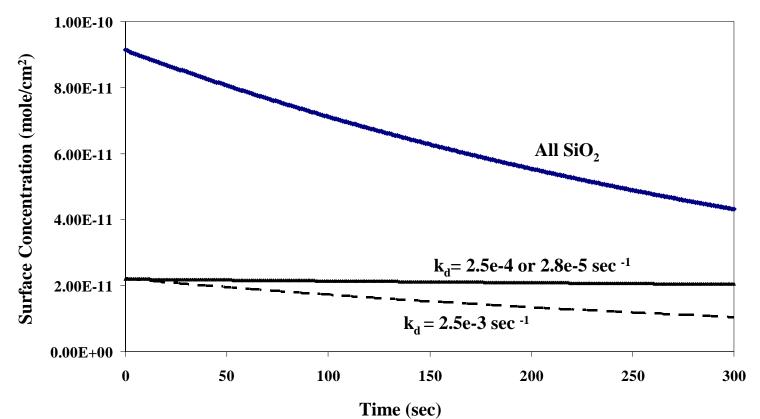
Poisson equation: $\nabla^2 \varphi = -\frac{\rho}{2}$

Nomenclature


 $C_i = Liquid Concentration$ $D_i = Diffusivity$ $C_s = Surface Concentration$ $S_0 = Maximum sites available$ $k_a = Adsorption coefficient$ $k_d = Desorption coefficient$ $\Phi = Electrostatic Potential$

<u>Challenges in Rinsing of Nano-Structures</u> <u>that Include HfO₂</u>

- HfO₂ has lower surface adsorption capacity compared to SiO₂. However, the sites are more energetic and adsorb contaminants more strongly (difficult to clean).
- Current rinse recipes for SiO₂ need to be modified in applications involving heterogeneous structures with Hf-based high-k dielectrics.

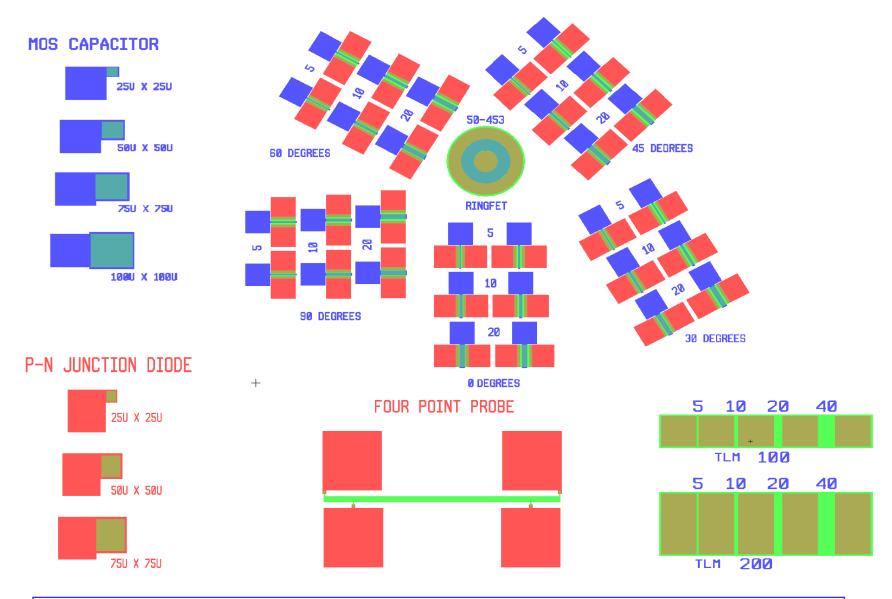

<u>Impact of Adsorption Rate on the Cleaning</u> <u>of High-k Dielectric Nano-Structures</u>

Time (sec)

Adsorption of contaminants on various dielectrics appears to be thermodynamically favorable; it readily takes place as long as surface is not saturated.

<u>Impact of Desorption Rate on the Cleaning</u> <u>of High-k Dielectric Nano-Structures</u>

The desorption dynamics play a key role in the cleaning of various high-k dielectrics (bottleneck and rate limiting in the overall process)

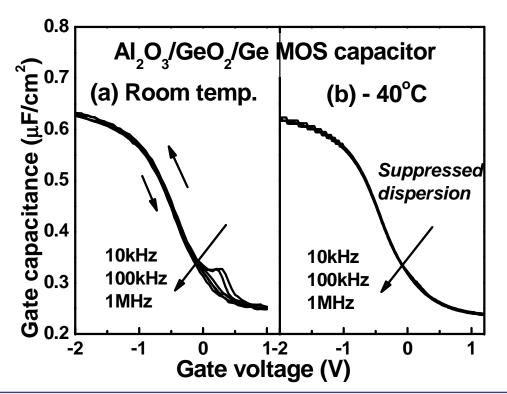

Electrical Tests Structures

- Ge as a performance booster and sample novel material
 - High electron/hole mobility
 - High process compatibility
 - Low temperature process
 - Possible V_{dd} scaling for reduced power dissipation

	Si	Ge
Electron m (cm ² /Vs)	1600	3900
Hole $m (cm^2/Vs)$	430	1900
Band gap (eV, 300K)	1.12	0.66
Dielectric constant	11.9	16
Melting point (°C)	1415	937

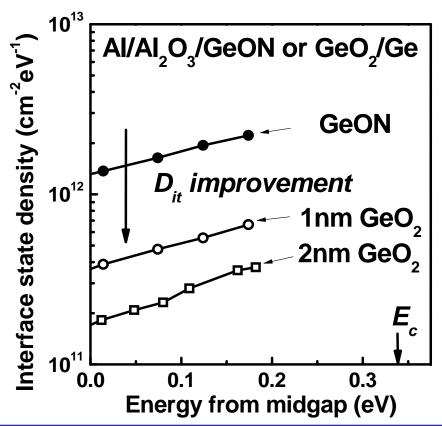
- Key challenges: Interface property of Ge MOS gate stack
 - GeO₂ is regarded as a promising interface gate dielectrics*
 - Since GeO₂ decomposition/GeO evaporation temperature is very low (430°C), low temperature oxidation is needed with high density of oxidant source
 - *D. Kuzum, IEDM2007, T. Takahashi, IEDM2007, Y. Nakakita, IEDM2008

MOSFET Photolithography Mask Design



Experiments: Baseline of Cleaning Process using Capacitor Test Structures

- Sample preparation
 - (100) and (111) Ge surface was cleaned by PRS100 organic remover and by HCl/HF
 - Surface was oxidized by Slot-Plane-Antennal (SPA) radical oxidation system
 - Thermal oxidation was also done as a reference
- Electrical property
 - 5nm ALD Al₂O₃ was deposited on GeO₂/Ge
 - Sputtered Al metal pad
 - 400°C FGA anneal
 - XPS was used to identify surface chemical property
 - Synchrotron radiation photoemission spectroscopy (SRPES) was used for band offset measurement


Electrical Properties of GeO₂/Ge Interface

- Al/Al₂O₃/GeO₂/Ge Ge MOS capacitor:
 - 350°C ALD Al₂O₃ deposition + 400°C FGA anneal
 - Very small hysteresis and frequency dispersion
 - Low temperature measurement suppresses frequency dispersion due to minority carrier response

Interface State Density (D_{it}) of GeO₂/Ge

- Comparison between GeON and GeO₂ using capacitor structures
 - D_{it} was measured by conductance method
 - Significant improvement from GeON
 - Achieved $D_{it} = 1.4 \times 10^{11} cm^{-2} eV^{-1}$ at midgap

<u>Summary</u>

- Conducted baseline etch tests on ALD HfO₂ and HfSi_xO_y in dilute HF
- Investigated the feasibility of etching the materials in ammonium hydroxide solutions after a pre-reduction treatment in H_2/N_2 gas mixtures
- Determined the rinse process parameters that are needed and will be used in developing reliable and robust low-water rinse recipes for cleaning of heterogeneous nano-structures
- Benchmarked high-k process with electrical characterization using new electrical test structures

<u>Industrial Interactions and</u> <u>Technology Transfer</u>

- Collaborative interactions with Initiative for Nanoscale Materials and Processes, INMP, at Stanford which is supported by 7 semiconductor and semiconductor equipment manufacturing companies.
- Interactions with ASM (Eric Shero and Eric Liu) for preparation of high-k test samples

Future Plans

Next Year Plans

- Pre-reduction of High-k wafers in CO/CO₂ mixtures to improve etching
- Use of complexing and chelating agents such as EDTA, and disulfonic acids in ammoniacal solutions to enhance dissolution
- Development of methodology and recipes for efficient rinsing and drying of heterogeneous structures using both process simulation and experimental measurements
- Ge P/N-MOSFET fabrication and electrical characterization carrier mobility analysis – substrate orientation and channel anisotropy
- Electrical testing methodology applied for comparison of etch and clean/rinse/dry of high-k dielectric using new high aspect ratio features

Publications, Presentations, and <u>Recognitions/Awards</u>

- Masaharu Kobayashi, Gaurav Thareja, Masato Ishibashi, Yun Sun, Peter Griffin, Jim McVittie, Piero Pianetta, Krishna Saraswat, Yoshio Nishi, "Radical oxidation of germanium for interface gate dielectric GeO₂ formation in metal-insulator-semiconductor gate stack," *Journal of Applied Physics*, 106, 104117, 2009.
- X. Zhang, J. Yan, B. Vermeire, F. Shadman, J. Chae, "Passive wireless monitoring of wafer cleanliness during rinsing of semiconductor wafers," *IEEE Sensors* (accepted).