Supercritical Carbon Dioxide Compatible Additives: Design, Synthesis, and Application of an

Environmentally Friendly Development Process to Next Generation Lithography

(Task Number: 425.030)

<u>**PI:**</u>

• Christopher K. Ober, Materials Science and Engineering, Cornell University

Collaborator:

• Juan de Pablo, Chemical and Biological Engineering, University of Wisconsin-Madison

Graduate Student:

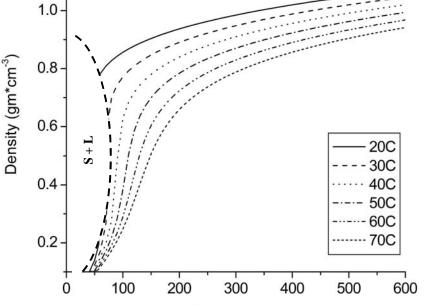
- C. Ouyang: PhD candidate, Materials Science and Engineering, Cornell University
- G. N. Toepperwein, PhD candidate, Chemical Engineering, University of Wisconsin

Objectives

- To demonstrate high-resolution patterning capabilities and scCO₂ development of molecular glass resists based on environmentally benign cores
- To synthesize and characterize fluorinated quaternary ammonium salts (QAS) as CO₂ compatible additives to develop conventional photoresists in scCO₂
- To demonstrate environmentally benign development of conventional photoresists using scCO₂ and silicone fluids using silicon-containing additives

ESH Metrics and Impact

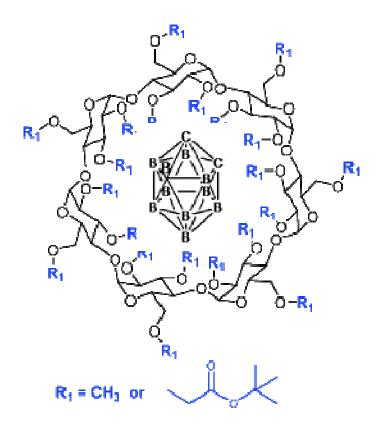
	Usage Reduction			Emmision Reduction			
Goals/Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other
Reduce organic		Eliminate	Up to 100%			Up to	
solvents used in	No energy used	need for	reduction of		Minimal use	100%	
processing	to purify and	water	organic solvents		of organic	reduction	
materials	treat water	usage	used	N/A	solvents	of HAPs	N/A
Reduce processing	Reduce anneal						
time / temperature	process costs	N/A	N/A	N/A	N/A	N/A	N/A
			Eliminate waste		Minimal use		
			of costly		of organic		
Additive processing	N/A	N/A	material	N/A	solvents	N/A	N/A

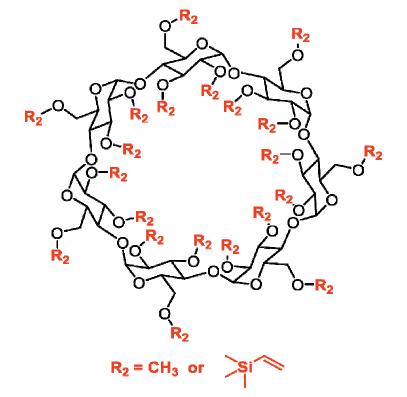


Why a Non-Aqueous Developer Solvent?

Environmental and Performance Advantages of scCO₂

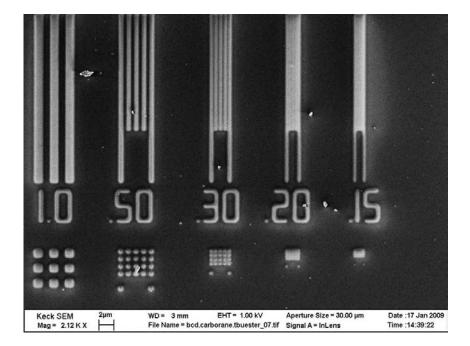
- Environmentally friendly, zero VOC solvent
- Highly tunable solvating power
 - ρ(**T**,**P**)
 - Leaves no residue
 - Clean separations
- One-phase fluid
 - Zero surface tension
 - Transport, viscosity between that of liquid and gas
- Nonpolar, inert character
- Potential to reduce LER and eliminate pattern collapse




Pressure (bar)

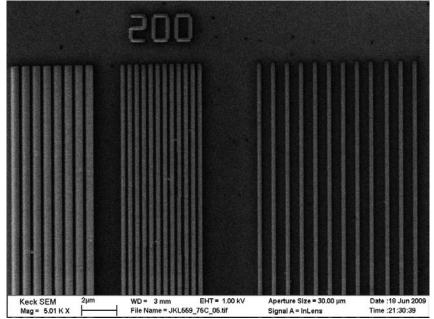
Molecular Glass Resists with Alicyclic Cores Environmental friendliness and scCO₂ solubility

Cyclodextrin-carborane complex


Vinyl silane cyclodextrin

Cyclodextrins are good hosts for inclusion complexes and have potential as molecular resists to hold functional moieties on their periphery

<u>Electron Beam Patterning and scCO₂ Development of</u> <u>Cyclodextrin Resists</u>

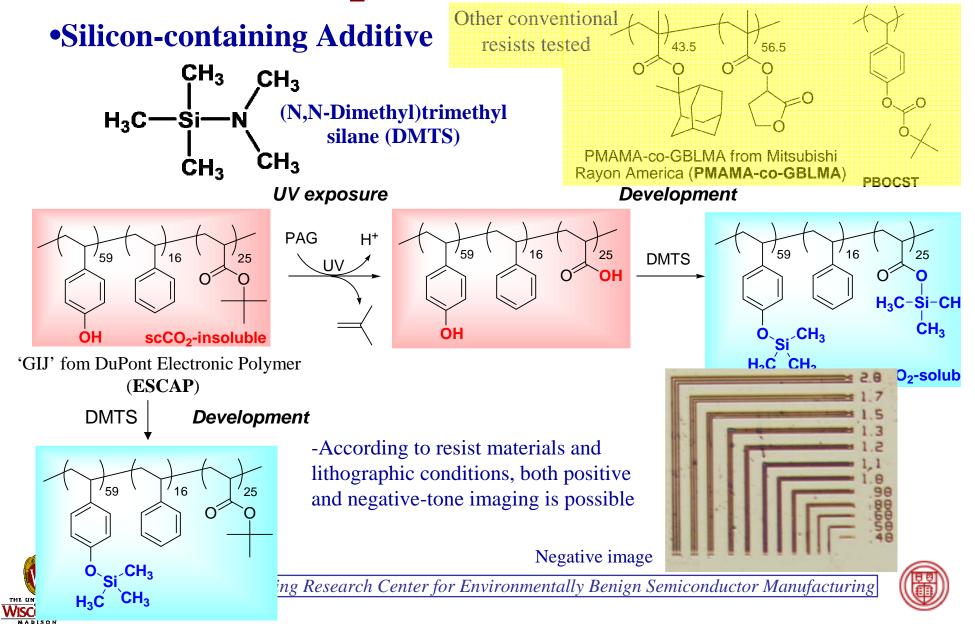


Cyclodextrin-Carborane complex

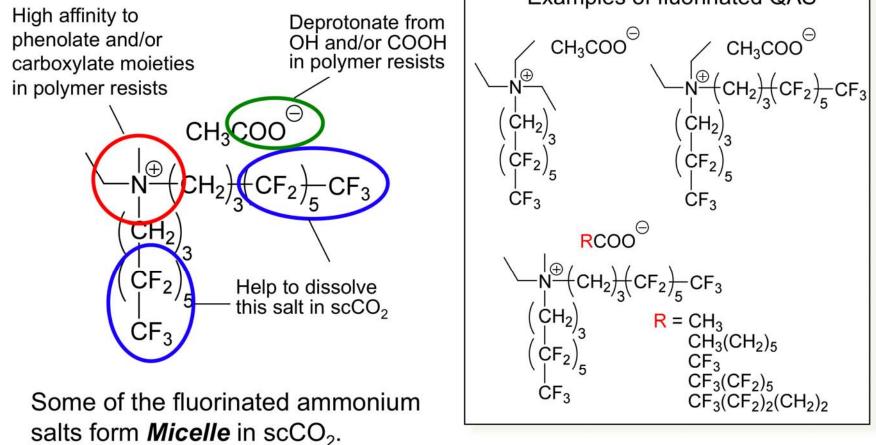
E-beam dose = $\mu C/cm^2$

PEB: 115 °C, 60 sec

scCO₂: 5000 psi, 5 min



Vinyl silane cyclodextrin E-beam dose = $44 \ \mu C/cm^2$ PEB: 75 °C, 60 sec scCO₂: 2000 psi, 2 min


Additives for scCO₂ to Develop Conventional Resists

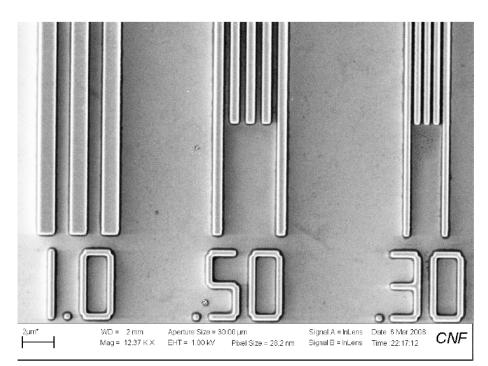
Quaternary Ammonium Salts (QAS)

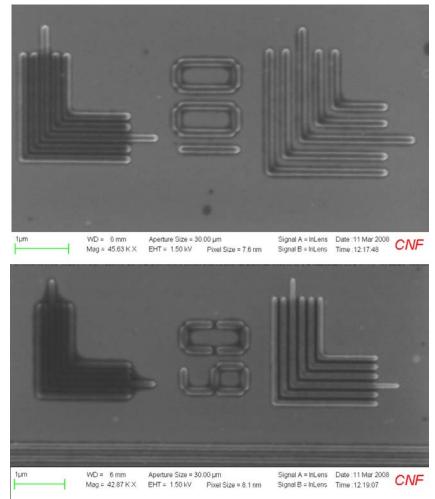
scCO₂ Compatible Additives:

Fluorinated Quaternary Ammonium Salts (QAS) Examples of fluorinated QAS -

Initial Dissolution Results of Resists with QAS

QAS	Resist	Unexposed	Exposed	note	
	PBOCST	Dissolution (40 nm/min)	Slow dissolution (1-4 nm/min)	Negative tone resist	
CH_3COO^{\ominus} $-N-(CH_2)_3-(CF_2)_5-CF_3$	ESCAP (Du Pont)	Dissolution (25 nm/min)	No dissolution	Negative tone resist	
$(CH_2)_3$ $(CF_2)_5$ CF_3 $QAS-4$	PMAMA-co- GBLMA (Mitsubishi Rayon)	No dissolution	No dissolution		
(1.25 mM)	EUV-P568 (TOK)	Dissolution (15 nm/min)	Slow dissolution (1-2 nm/min)	Negative tone resist	
	PBOCST	No dissolution	No dissolution		
$CF_{3}CF_{2}COO^{\ominus}$ $-N-(CH_{2})_{3}-(CF_{2})_{5}-CF_{3}$	ESCAP (Du Pont)	No dissolution	No dissolution		
$(CH_2)_3$ $(CF_2)_5$ CF_3 $QAS-7$	PMAMA-co- GBLMA (Mitsubishi Rayon)	No dissolution	No dissolution		
(1.25 mM)	EUV-P568 (TOK)	Dissolution (45 nm/min)	Slow dissolution (<1 nm/min)	Negative tone resist	


Exposed by UV lamp (254 nm, 24 mC/cm²), developed in scCO₂ at 50°C and 5000 psi.


Electron Beam Patterning

Development test of EB-patterned TOK resist (EUV-P568) with QAS-4 or QAS-7

Dose: 107 uC/cm², QAS-4 (1.25 mM), dev. for 60 min at 50°C, 5000 psi, flow 30 min

Negative tone patterns with sub-100 nm feature sizes were obtained.

Dose: 20 uC/cm², QAS-7 (1.25 mM), dev. for 60 min at 50°C, 5000 psi, flow 30 min

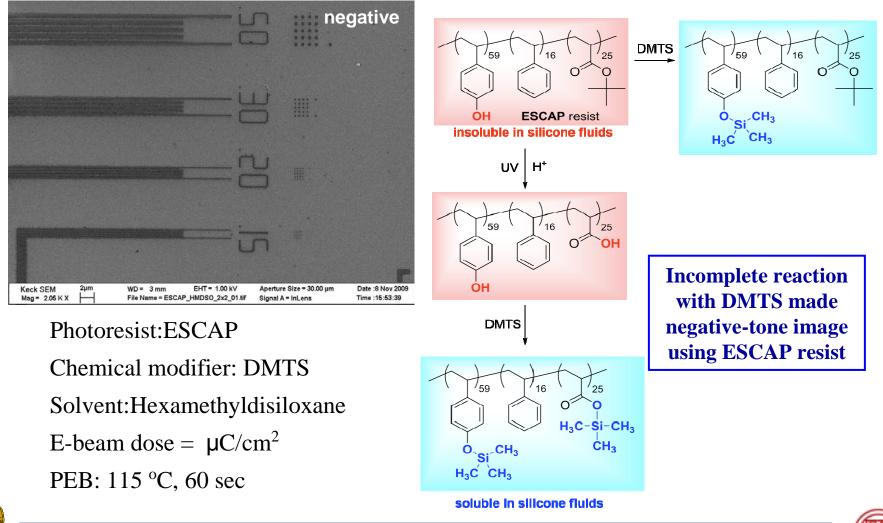
Silicone Fluids-Linear Methyl Siloxanes

•Low in toxicity

- -Environmentally friendly
- -VOC exempt
- •Contribute little to global warming
- •Non-ozone depleting
 - -replacement for Ozone Depleting Substances
- •Low surface tension
 - -potential to eliminate patterns collapse
- •Can be recycled
- -degrade to naturally occurring chemical species

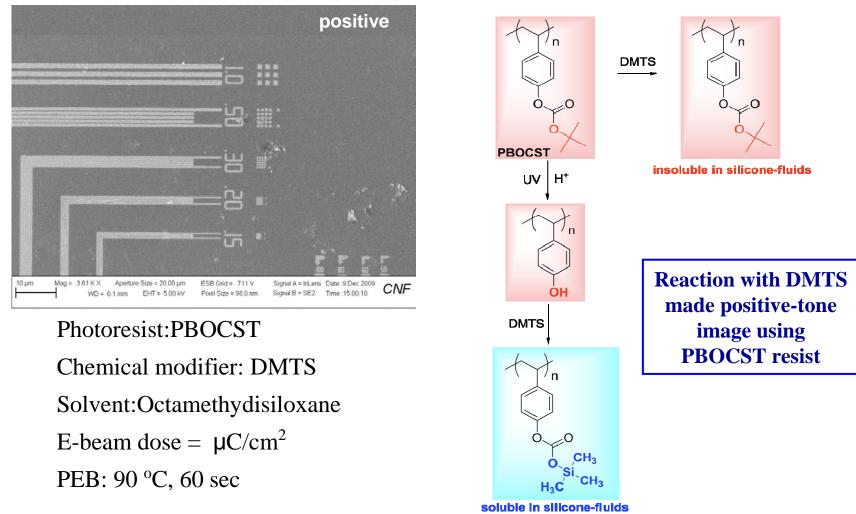
Hexamethyldisiloxane

Octamethyltrisiloxane


Decamethyltetrasiloxane

D. E. Williams, ACS Symposium Series, 2000, 767, 244-257.

<u>Electron Beam Patterning and Silicone Fluid</u> <u>Development of Conventional Photoresists</u>



SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

WISCONSIN

<u>Electron Beam Patterning and Silicone Fluid</u> <u>Development of Conventional Photoresists</u>

Industrial Interactions and Technology Transfer

- Former student (N. Felix) hired by IBM Fishkill Research Center
- Jing Sha moved to Intel grant and interned at NIST
- Interactions with Intel on this topic have been successful
- Collaboration with Albany Nanotech for EUV exposures

Task Deliverables

Report on the preparation of a series of quaternary ammonium salts for resist development (6/30/2009)
 -completed

Future Plans

Next Year Plans (seed effort)

- To explore more organosilanes and non-fluorinated quaternary ammonium salts (QAS) for faster dissolution of photoresists in silicone fluids and scCO₂ with the help of simulation data from Prof. Juan J de Pablo Group in Univ. of Wisconsin, Madison
- To continue synthesis efforts for scCO₂ processable molecular glass resists with environmentally benign, naturally occurring cores for next generation high-resolution lithography

Long-Term Plans

- To expand use of additives for scCO₂ and environmentally friendly silicone fluids to develop positive tone resists
- To create new chemistries for patterning and functionalizing small, non-polar molecules in scCO₂

Publications, Presentations, and Recognitions/Awards

Publications

- M. Tanaka, A. Rastogi, N. M. Felix, C. K. Ober, "Supercritical Carbon Dioxide Compatible Salts: Synthesis and Application to Next Generation Lithography", J. Photopolym. Sci. Technol. (2008), 21(3), 393-396.
- J. Sha and C. K. Ober, "Fluorine- and Siloxane-Containing Polymers for Supercritical Carbon Dioxide Lithography", Polymer International (2009), 58(3), 302-306.
- A. Rastogi, M. Tanaka, G. N. Toepperwein, R. A. Riggleman, J. J. dePablo, C. K. Ober, "Fluorinated Quaternary Ammonium Salts as Dissolution Aids for Polar Polymers in Environmentally Benign Supercritical Carbon Dioxide", Chem. Mater. (2009), 21(14), 3121-3135.
- J. Sha, J-K Lee, C. K. Ober, "Molecular Glass Resists Developable in Supercritical CO₂ for 193-nm Lithography", Proceedings of SPIE (2009), 7273, 72732T.

Presentations

- 25th International Conference of Photopolymer Science & Technology (June 2008). "Supercritical Carbon Dioxide Compatible Salts: Synthesis and Application to Next Generation Lithography"
- US-Japan Polymat 2008 Symposium (Aug 2008). "Environmentally Benign Development of Polymer Photoresists Using Supercritical Carbon Dioxide"
- ERC Teleseminar (Oct 2008). "Environmentally Benign Development of Standard Resists in Supercritical Carbon Dioxide Using CO₂ Compatible Salts"
- Advances in Resist Materials and Processing Technology XXVI conference (part of the SPIE Symposium on Advanced Lithography) (Feb 2009). "Environmentally Benign Development of Photoresists in Supercritical Carbon Dioxide Using CO₂ Compatible Additives"

