<u>Supercritical Carbon Dioxide</u> <u>Compatible Additives:</u> <u>Design, Synthesis, and Application of an</u> <u>Environmentally Friendly Development Process to</u> <u>Next Generation Lithography</u>

(Task Number: 425.031)

PIs:

- Juan J. dePablo, Chemical and Biological Engineering, University of Wisconsin
- Christopher K. Ober, Materials Science and Engineering, Cornell University

Graduate Students:

- Gregory N. Toepperwein: 4th year PhD candidate, Chemical and Biological Engineering, University of Wisconsin
- Christine Ouyang: 2nd year PhD candidate, Materials Science and Engineering, Cornell University

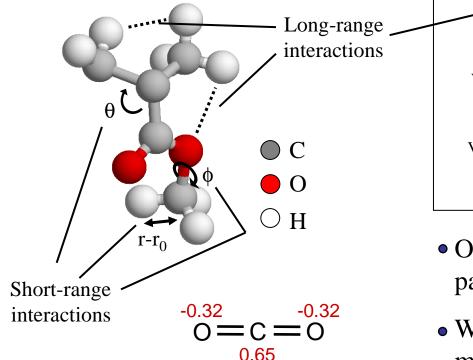
Undergraduate Students:

• Dan Rynearson, Chemical and Biological Engineering, University of Wisconsin

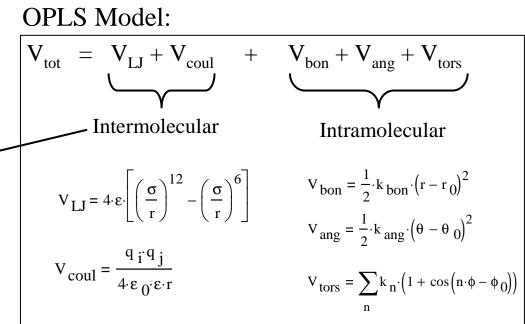
Objectives

- Develop chemistry platform for use of scCO₂ as a solvent with traditional photoresists
 - Design fluorinated quaternary ammonium salts (QAS) as CO₂ compatible additives
 - Elucidate underlying mechanisms of dissolution enhancement
 - Apply mechanistic understanding to creation on nonfluorinated additives
- Extend scCO₂ methods to molecular glass photoresists

ESH Metrics and Impact

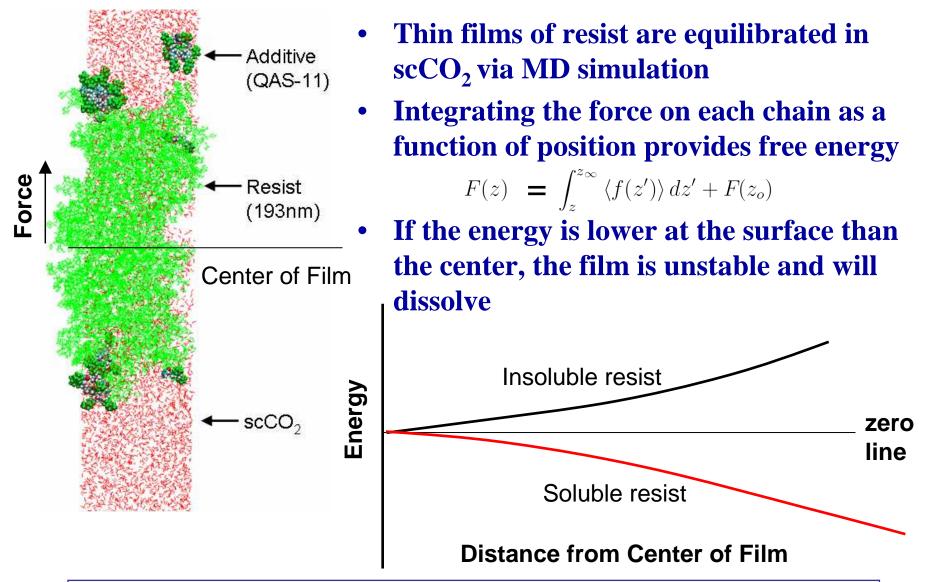

	Usage Reduction			Emmision Reduction			
Goals/Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other
Reduce organic		Eliminate	Up to 100%			Up to	
solvents used in	No energy used	need for	reduction of		Minimal use	100%	
processing	to purify and	water	organic solvents		of organic	reduction	
materials	treat water	usage	used	N/A	solvents	of HAPs	N/A
Reduce processing							
time / temperature	process costs	N/A	N/A	N/A	N/A	N/A	N/A
			Eliminate waste		Minimal use		
			of costly		of organic		
Additive processing	N/A	N/A	material	N/A	solvents	N/A	N/A

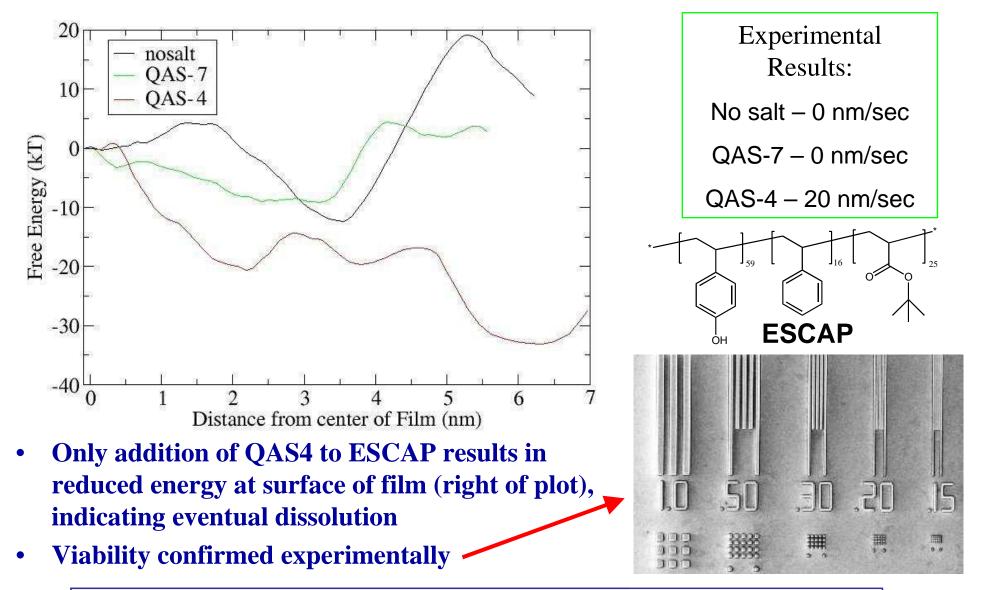
Systems of Interest


Model photoresists in their protected forms mm/ Jong. $\int 25$ 44 56 OH **ESCAP** 193nm-resist PHOST QAS Additives **Previously shown to be soluble in CO₂** • **QAS for ESCAP & PHOST** $CF_{3}CF_{2}COO^{\ominus}$ -(CH₂)₃-(CF₂)₅-CF₃ H_{2})₃ CH_3000 QAS for 193nm-resist $-(CH_2)_3 - (CF_2)_5 - CF_3$ $H_2)_3$ 11: R = H $(\dot{C}H_2)_3$ $(\dot{C}H_2)_3$ 12: $R = CH_3$ $(\dot{C}F_2)_5$ QAS-7 $(\dot{C}F_2)_5$ QAS-4 13: $R = CF_3$ CF_3 CF₃ 14: $R = NO_2$

<u>Model</u>

• Simulation allows screening of large numbers of systems and enables direct observation of molecular behavior

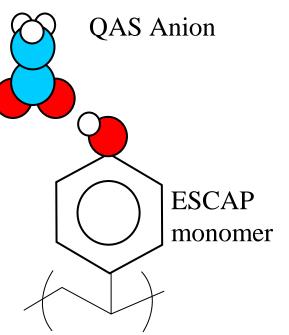

charges important: scCO2 has a large quadrupole moment


- OPLS force field employed for most parameters
- We calculated charges (q_i) using quantum mechanics

• Process Conditions:
$$T = 340K (\sim 67^{\circ}C)$$

P = 345 bar

Free Energy Calculation



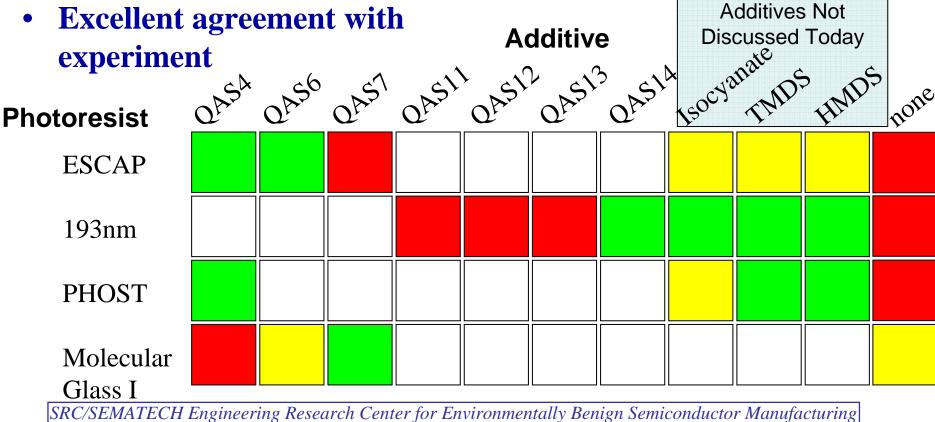
Sample Result: ESCAP Energy Curve

ESCAP Mechanism with QAS4

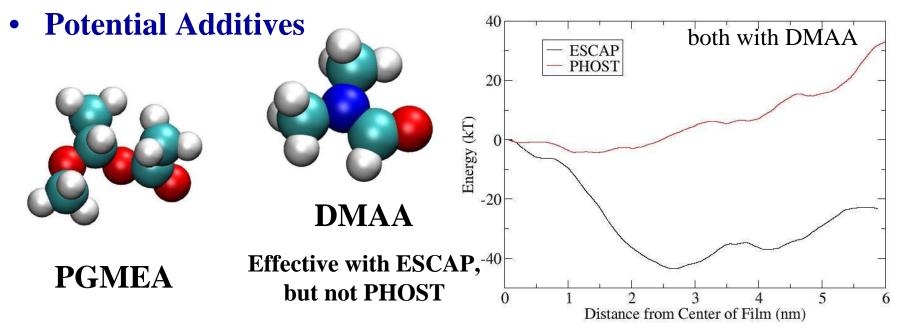
- The –OH group of ESCAP associates with the anions; contacts last >500 ps.
- Reducing available polar regions increases solubility in scCO₂
- Will use understanding of mechanism to develop new additives

- scCO2 not shown for clarity
- Purple ESCAP
- Green Fluorine (QAS-4)
- Cyan Carbon (QAS-4)
- Red Oxygen (QAS-4)
- White Hydrogen (QAS-4)

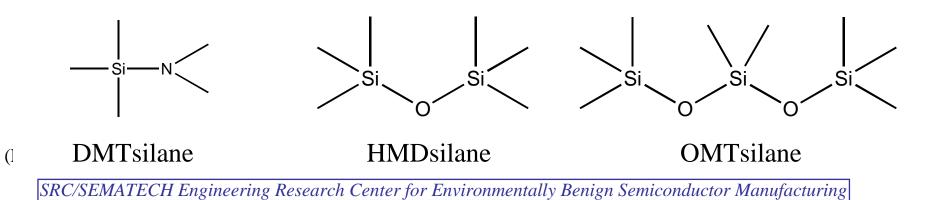
Summary of Fluorinated Additive Results


Possible

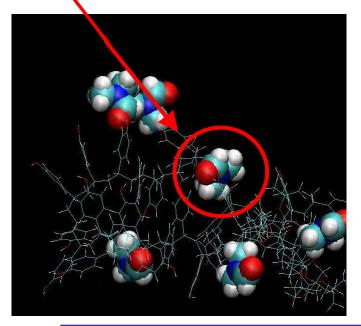
Pass


FAIL Untested

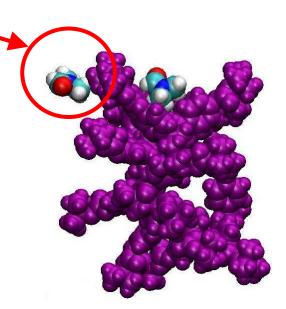
Reactive


- We have applied these methods PASS to a range of additive-resist combinations to screen for promising systems
- **Excellent agreement with**

Non-Fluorinated Systems

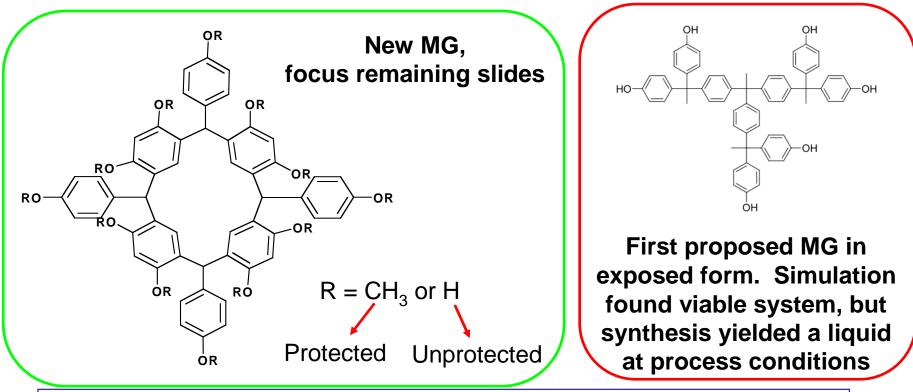


• Alternative solvents not needing fluorinated additives



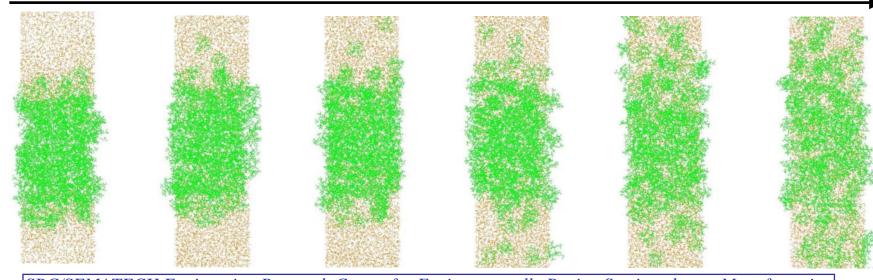
DMAA Mechanism

- Additive was based on applying our understanding of QAS4 effectiveness on ESCAP
- DMAA demonstrates similar hydrogen bonding
- Ineffective with PHOST; obstructs terminal t-butyl group, instead exposing polar region, reducing scCO₂ solubility



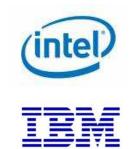
Can develop nonfluorinated additives, but they are more resist-specific

Molecular Glass (MG) Resists


- Molecular Glass have low LER due to small size
- Experimental synthesis and testing is expensive and does not guarantee results; screening via simulation saves resources

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Molecular Glass in scCO₂


- Protected MG dissolved in scCO2 without additive; unprotected form insoluble
- No testing with additives necessary, system shows most robust dissolution to date; no free-energy curve needed
- Highly promising results to be confirmed experimentally

Time (1-2ns between images)

Industrial Interactions and <u>Technology Transfer</u>

- Regular discussions with Intel via Richard Schenker
- Interactions with Dario Goldfarb from IBM
- Interactions with Kenji Yoshimoto from Global Foundry

Future Plans

Next Year Plans

- Complete characterization of bulk properties of new potential molecular glass resists and silicone-based solvents
- Verification of new materials via laboratory experiments
- Additional screening of new non-fluorinated additives for use with traditional photoresists

Long-Term Plans

- To expand use of additives for scCO₂ and environmentally friendly silicone fluids for development of positive tone resists
- To create new chemistries for patterning and functionalizing small, non-polar molecules in scCO₂

Publications, Presentations, and Recognitions/Awards

Publications

- Tanaka M, Rastogi A, Toepperwein GN, Riggleman RA, Felix N, de Pablo JJ, Ober CK. "Fluorinated Quaternary Ammonium Salts as Dissolution Aids for Polar Polymers in Environmentally Benign Supercritical Carbon Dioxide", Chemistry of Materials (2009), 21(14), 3121-3135
- Rastogi A, Toepperwein GN, Tanaka M, Riggleman RA, de Pablo JJ, Ober CK. "Contact Analysis Studies of an ESCAP resist with scCO₂ compatible additives", Proc. SPIE (2009)
- Sha J, Ober CK, "Fluorine- and Siloxane-Containing Polymers for Supercritical Carbon Dioxide Lithography", Polymer International (2009), 58(3), 302-306

Presentations

• ERC Telesminar (Oct 2008). "Environmentally Benign Development of Standard Resists in Supercritical Carbon Dioxide Using CO₂ Compatible Salts"