Development of an All-Wet Benign Process for Stripping of Implanted State-

of-the-Art Deep UV Resists

(Task number: 425.033)

Experimental Investigation of Catalyzed Hydrogen <u>Peroxide(CHP)</u> System For HDIS

<u>**PI:**</u>

• Srini Raghavan, Department of Materials Science and Engineering, UA

Graduate Students:

• R. Govindarajan: PhD candidate, Department of Materials Science and Engineering, UA

Cost Share (other than core ERC funding):

• In-kind donation (wafers) from Sematech(~ \$ 5,000)

Objectives

- Investigate the use of Catalyzed Hydrogen Peroxide (CHP) chemical system for disrupting the carbonized crust on deep UV resist layers exposed to high dose of ions (\ge>10¹⁵/cm²)
- Identify the effectiveness of CHP system using amorphous carbon as model compound

ESH Metrics and Impact

> SPM solution

• Requires high temperature (~180°C) for stripping high dose implanted resists

> Low toxicity of CHP system

Compound	LD ₅₀ (mouse)	Carcinogenic
Peroxide	2000 mg/kg	NO
Sulfuric acid	90 ml/kg (rat)	Yes
Ferrous sulfate	1520mg/kg	NO

> ESH Impact

• Safety issues related to the use of very hot SPM can be significantly reduced

Current Year Activities

> Explored the use of Catalyzed Hydrogen Peroxide (CHP) system for disrupting carbonized crust that typically forms on high dose implanted resists using amorphous carbon films as model compound

> Tested CHP system on ion-implanted resists

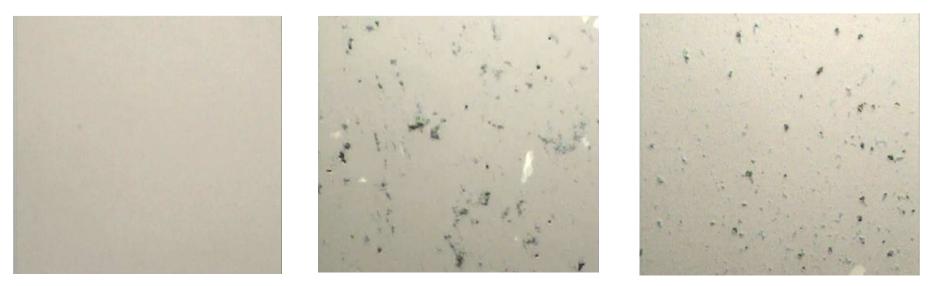
➢ Removal of the resist after disruption of crust was investigated using conventional SPM solutions at temperatures less than 80°C.

Experimental Approach

>Methods

•Morphological changes after CHP treatment were characterized using Leica DM4000B microscope operated using QCapture Pro 5.0 software, Leeds Confocal microscope, AFM and FESEM

≻Materials


• Amorphous carbon films (~900 Å) donated by Applied Materials , Implanted resist films (1E16 As /cm²; ~1.5 μm) donated by Sematech

•Ferrous Sulfate, 99.998% pure

•Hydrogen Peroxide (Semiconductor grade)

Attack of Amorphous Carbon (a-C) Films

Optical Microscope Magnification : 1000x

Blanket a-C

a-C in 10% H₂O₂ CHP system

a-C in 20% H_2O_2 CHP system


≻CHP system: Hydrogen peroxide plus 1mM Fe²⁺; pH: 2.8; room temperature

> Optical micrographs show disruption for one hour exposure


> Even after 15 minutes exposure, disruption was evident

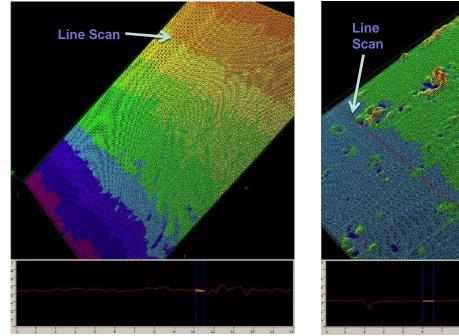
Effect of Fe²⁺ level in CHP on a-C disruption

Optical Microscope Magnification : 1000x

a-C in 1mM Fe²⁺ CHP system

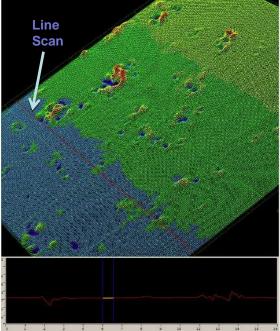
a-C in 5mM Fe²⁺ CHP system

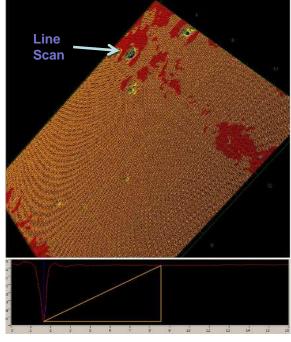
a-C in 10mM Fe²⁺ CHP system


Experiments conducted for 30 minutes

≻H₂O₂ concentration fixed at 20%

➢Higher Disruption observed at 5mM Fe²⁺ level

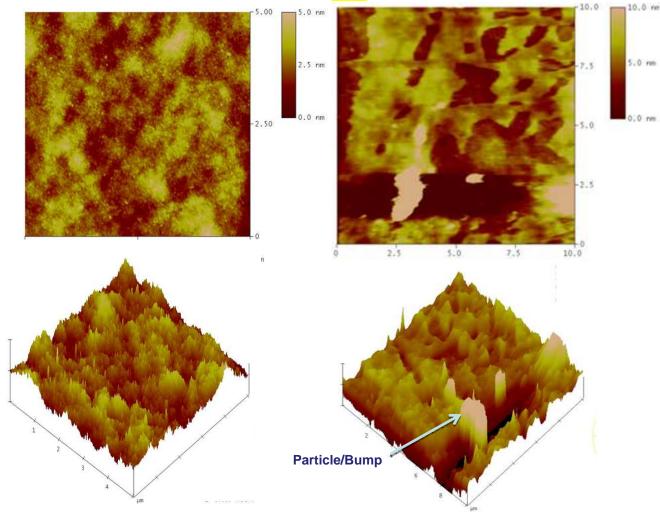

>Poor attack in 10mM Fe²⁺ level CHP system may be due to faster decomposition of H_2O_2


<u>Confocal Microscopic Study of Changes in a-C film and</u> <u>High Dose Implanted Photoresist Film When Exposed to CHP</u>

Blanket a-C

Confocal Microscope Magnification : 17Kx

PR in 5mM Fe²⁺, 20%H₂O₂


a-C in 5mM Fe²⁺, 20%H₂O₂

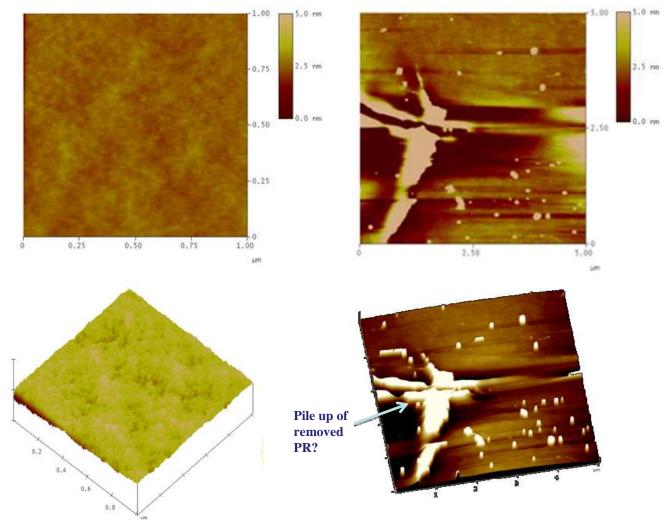
>Effect of CHP on a-C and PR studied for 15 minutes

- **Blanket a-C is smooth without pores**
- **CHP** treated a-C shows disruption with depth up to 90 nm (~ film thickness)
- >In high dose implanted PR (1E16 As/cm²) pores of depth ~ 300 nm are seen

AFM Analysis of Model a-C film

AFM Contact mode

>Effect of CHP on a-C studied for a contact time of 15 minutes


≻Blanket a-C surface
is smooth with
RMS roughness ~ 0.8nm

≻CHP treated a-C shows modification of surface with RMS_{roughness} ~ 10nm

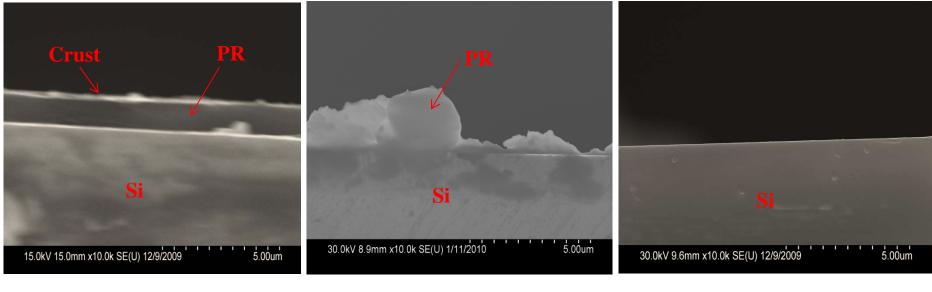
Blanket a-C

a-C in 5mM Fe²⁺, 20%H₂O₂

AFM Analysis of High Dose Implanted PR film

AFM Contact mode

Effect of CHP on
1E16 As/cm² implanted
PR studied for a
contact time of 15
minutes


Blanket PR surfaceis smooth withRMS ~ 0.2 nm

CHP treated PR shows disruption on surface with RMS ~ 8 nm

Blanket PR 1E16 As/cm²

PR 1E16 As/cm² in 5mM Fe²⁺, 20%H₂O₂

Effect of CHP on High Dose Implanted PR film

Blanket PR

PR in 2:1 SPM

PR in CHP + SPM

>1E16 As/cm² implanted PR shows crust layer

≻Discontinuous PR residue film observed after 2:1 SPM treatment for 5 minutes at 80°C

➤ CHP (5mM Fe^{II}, 20% H₂O₂; Time: 30min; room temperature) treated PR was completely removed in 2:1 SPM @ 80°C in 5minutes

Summary

- Effectiveness of Catalyzed Hydrogen Peroxide system in disrupting crust layer was investigated using a-C film as model compound
- ➢ Disruption of a-C film surface was observed in CHP system containing 5mM Fe^{II}, 20% H₂O₂ at room temperature
- Confocal microscopy has revealed surface disruption with depth ~90 nm and ~300 nm for a-C film and high dose implanted PR respectively
- Complete removal of high dose implanted PR is possible by first exposing the resist in CHP solution for 30 minutes and then in 2:1 SPM at 80°C for 5minutes

Future Plans

Next Year Plans

- Optimization of CHP system to decrease the exposure time prior to conventional SPM treatment
 - Variables:H₂O₂/Metal ion level, Time, Temperature, pH
- Measure metal levels after cleaning
- Work with a tool maker to test the chemical system on full wafers

Long Term Plans

• Development of CHP system for one step removal of implanted photoresists

Industrial Interactions and Technology Transfer

- Technical discussions with Joel Barnett of Sematech and Hsi-An Kwong of Freescale
- Interactions with Dr. Renhe Jia and Dr. Chiu Chan of Applied Materials to decide on a-C films as model films