Improvement of ESH Impact of Back End of Line (BEOL) Cleaning Formulations Using Ionic Liquids to Replace Traditional Solvents (Task Number: 425.034)

<u>**PI:**</u>

• Srini Raghavan, Materials Science and Engineering, University of Arizona

Graduate Student:

• Dinesh P R Thanu, PhD candidate, Materials Science and Engineering, University of Arizona

Objectives

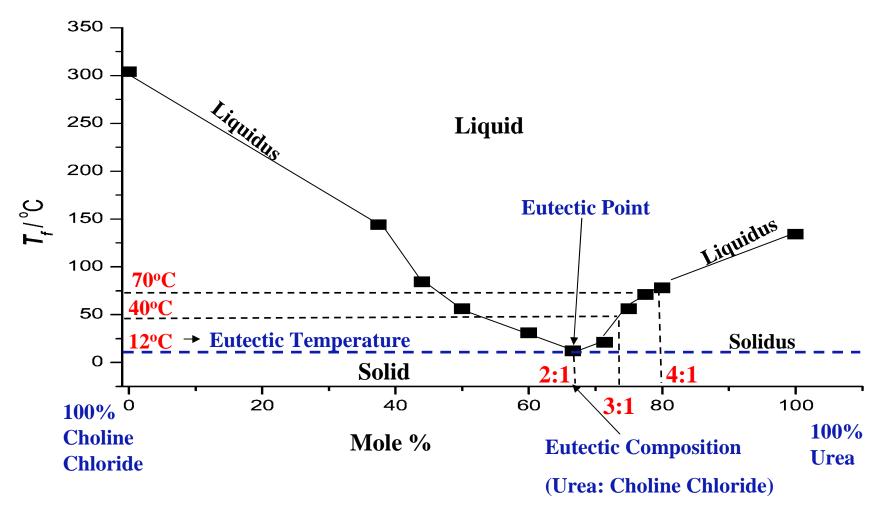
OVERALL OBJECTIVE

• Develop cleaning formulations based on ionic liquids to replace traditional organic solvent based formulations for BEOL cleaning

SPECIFIC OBJECTIVE FOR THE CURRENT CONTRACT YEAR

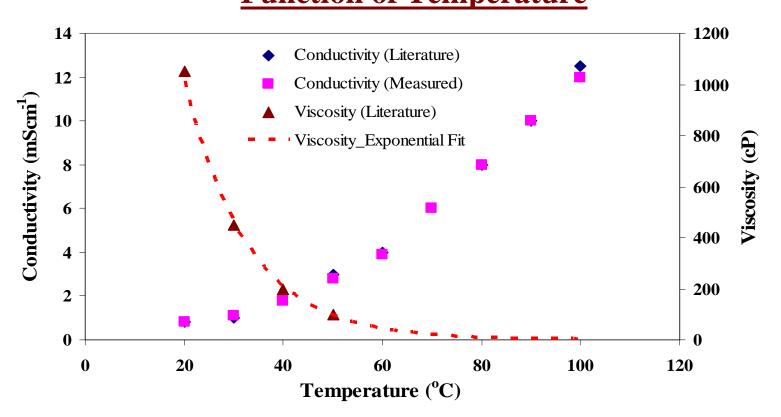
• Investigate the use of deep eutectic solvents (DES) based on choline chloride and urea for the removal of post etch residues

ESH Metrics and Impact


ESH objective: Replacement of organic solvents from BEOL cleaning ۲ formulations which generate a waste stream that is difficult to treat

			> 60%		rmulation used in this dy	
Solver Water					Eutectic composition of two benign compounds 100% 0% 0%	
			Components Deep Eutectic Solv	ents:	Vapor Pressure (@20 ⁰ C) m	m Hg
gredients LD ₅₀ (Oral R mg/kg		at)	t) Choline Chloride Urea <u>Conventional Solvents:</u> DMSO N-Methyl Pyrrolidone Sulfolane		4.93 E-10 @25°C 6.75 E-3 0.42 0.29 0.01	
rea noline Chloride						

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing


Deep Eutectic Solvents (DES)

(e.g.) Urea-Choline Chloride Binary Phase Diagram

• 2:1, 3:1 and 4:1 (urea:choline chloride) chosen for investigation

<u>Conductivity and Viscosity of Urea:Choline Chloride (2:1) as a</u> <u>Function of Temperature</u>

- Good conductivity (1mScm⁻¹ @ 20°C), low vapor pressure and toxicity
- Conductivity increases with temperature (2mScm⁻¹ @ 40°C, 6mScm⁻¹ @70°C)
- High viscosity at room temperature and it decreases with increase in temperature
- Good solubility for copper oxides at elevated temperatures [1]
- **1.** A. Abbott, et al., *Journal of Chemical Engineering Data*, Volume 51, p. 1280-1282 (2006) *SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing*

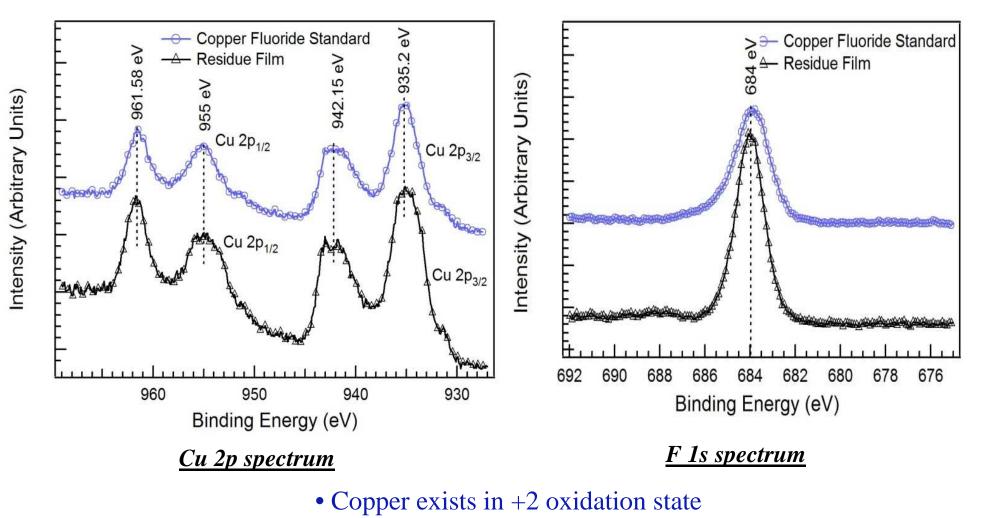
Experimental Approach

Preparation of Residue Film

Photoresist coating:

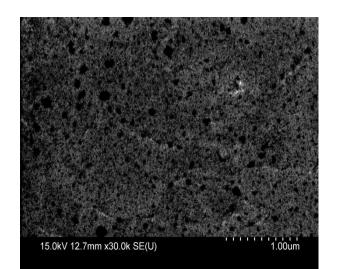
• Photoresist AZ 3312 (g line) spin coated on copper wafers to a thickness of 1.2µm at a spin speed of 4000 rpm for 30 seconds; Baking: 90°C for 90 seconds

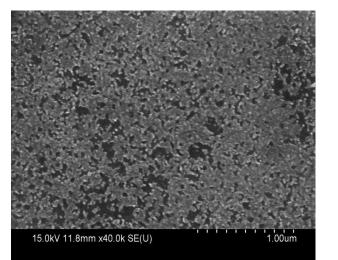
Photoresist ashing :

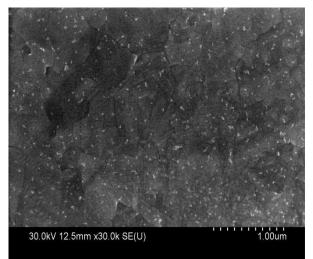

• Ashed in Reactive Ion Etcher (RIE) tool at a rate of 1580 Å/min using CF_4/O_2 plasma at 50 mTorr pressure and 250W of plasma power; Ashing time: ~7min

- Thickness: ~30nm measured by Atomic Force Microscope step height measurements
- Contains mainly CuF₂ as determined from X-ray Photoelectron Spectroscopy (XPS)

Methods

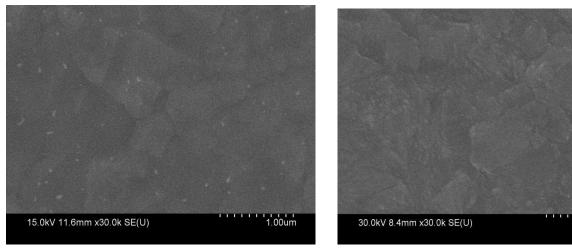

• Residue removal investigated using Scanning Electron Microscopy (SEM) and confirmed using XPS and open circuit potential measurements


Oxidation State and Bonding of Elements in Residue Film-Comparison with CuF₂ Standard



• Residue film mainly contains CuF₂

Residue Removal using 2:1 DES (Urea:Choline Chloride) at 40°C

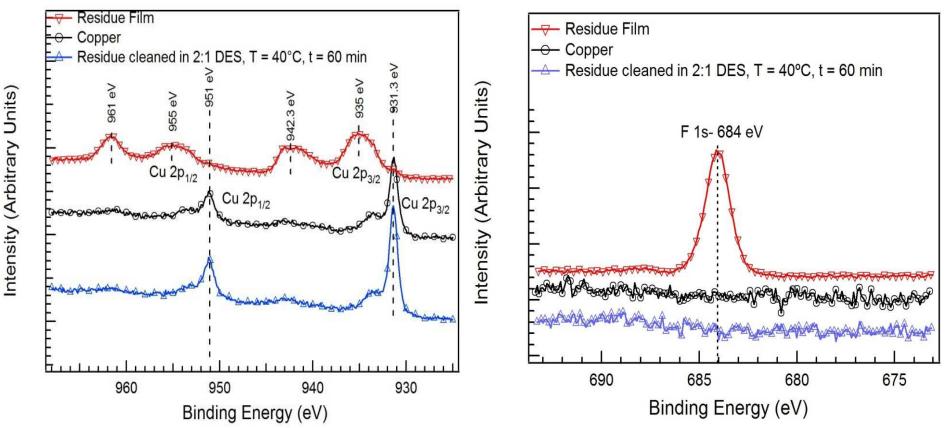


0 min

10 min

- Residue removal monitored using SEM imaging
- Complete removal of residue film observed within 60 minutes of cleaning

30 min

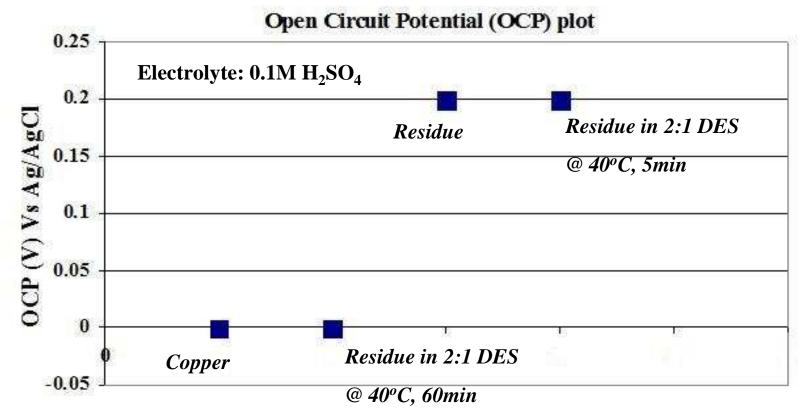

60 min

1.00um

Confirmation of Residue Removal in 2:1 DES using XPS Analysis

Cu 2p spectrum

F 1s spectrum



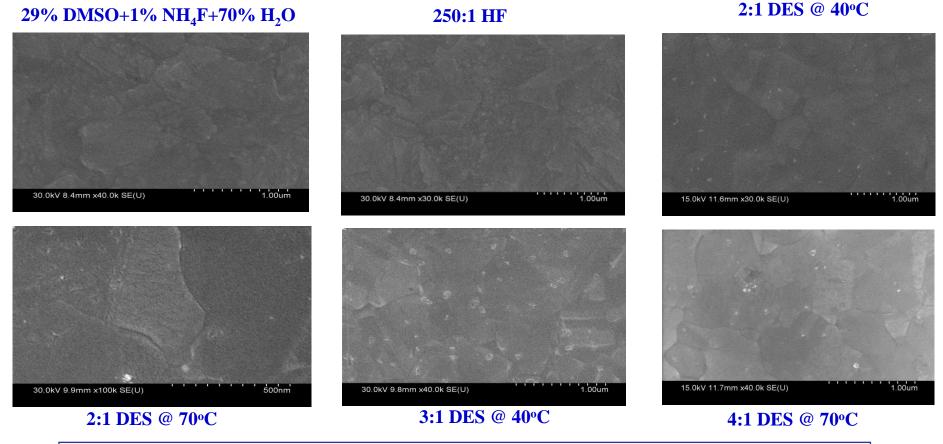
• Residue removal exposes bare copper surface after cleaning

Cu 2p Spectrum

- Binding energies in sample cleaned in 2:1 DES at 40°C are identical to those for bare Cu
- F 1s Spectrum
 - Absence of fluorine peak in sample cleaned in 2:1 DES at 40°C –complete residue removal

Electrochemical Study to Confirm Residue Removal in DES

<u>Complete Removal</u>


OCP of bare copper and sample cleaned in 2:1 DES at 40° for 60 min is same

• Incomplete Removal

Higher OCP of residue film coated Cu exposed to 2:1 DES at 40° for 5 min indicates incomplete film removal

<u>Comparison of Residue Removal in DES and Conventional</u> <u>Cleaning Formulations</u>

- Cleaning Time: 30 min
- DES and conventional cleaning formulations are comparable—DES provides very low etch rate of dielectric

Highlight of Results

• Deep eutectic solvent (DES) containing benign chemicals, choline chloride and urea, shows promise as a BEOL cleaning formulation

- 2:1 DES at 40°C and 70°C effectively removed post etch residues on copper
- Removal of post etch residues confirmed using X-ray Photoelectron Spectroscopy (XPS) and electrochemical techniques

Industrial Interactions

- Discussions with Dr. Robert Small, R.S. Associates, Tucson
- Teleconference with Dr. Mansour Moinpour, Intel, to discuss results and seek advice on future direction

Acknowledgements

- Shariq Siddiqui, PhD, Materials Science and Engineering, University of Arizona
- Nandini Venkataraman, PhD, Materials Science and Engineering, University of Arizona

Future Plans

Next Year Plans

- Reduction of cleaning time, DES carry over, and operating temperature
- Rinsing of cleaned substrates—address any corrosion issues during rinsing
- Optimize formulation for the selective removal of post etch residue created from DUV resists
- Investigate cleaning of patterned test structures and determine the end point removal using electrochemical techniques

Long-term Plans

- Investigation of choline chloride/malonic acid as a cleaning formulation for post etch residue removal
 - Eutectic mixture of choline chloride with malonic acid possess a high solubility of copper oxides

Publications, Presentations, and <u>Recognitions/Awards</u>

Publication

 D. P. R. Thanu, N. Venkataraman, S. Raghavan and O. Mahdavi, "Dilute HF Solutions for Copper Cleaning During BEOL Processes: Effect of Aeration on Selectivity and Copper Corrosion", ECS Transactions, Volume 25, Issue 5, Page: 109-116 (2009)

Presentation

 D. P. R. Thanu, N. Venkataraman, S. Raghavan and O. Mahdavi, "Dilute HF Solutions for Copper Cleaning During BEOL Processes: Effect of Aeration on Selectivity and Copper Corrosion", 216th ECS Fall Meeting, Vienna, Austria, October 4-9 (2009)