Treatment of Cu-CMP Wastes Using Electrocoagulation

Yuxia Sun and Dr. Srini Raghavan Department of Materials Science Engineering

Dr. Jim Baygents Department of Chemical & Environmental Engineering

The University of Arizona

Slurry for Copper CMP

Cu-CMP Waste Characteristics

A typical copper CMP waste contains:

- 0.02 0.5 w/v% solids
- 2 40ppm copper ions
- An organic complexant? (e.g. EDA, EDTA, CA)
- A corrosion inhibitor (e.g. BTA)

- 1. Removal of suspended solids without adding any "additional" chemicals.
- 2. Simultaneously remove dissolved copper to facilitate water recycle and meet environmental regulations.

Techniques Used

• Electrodecantation/Electrocoagulation

solid/liquid separation assisted by the application of an electric field.

Electrodeposition

plate out copper

 In-situ chemical precipitation remove copper as Cu(OH)₂

Understanding EC/ED

Have worked on two fronts:

1. Experiments

2. Modeling

Modeling Electrically - Driven Separations

Ion and particle conservation

convection, diffusion, electromigration

•Dissociation - association reactions (Equilibrium)

e.g. $K_w = [H^+][OH^-]$

- •Local electroneutrality + charge balance \Rightarrow local E-field
- •Momentum balance:

Navier-Stokes eqns with gravitational body force

Electrode reactions

Experimental Setup

Copper Removal

• The membrane partitions the anode and cathode chambers, allowing pH changes to occur in the anode and cathode compartments.

Solids Removal

- •Particle-Particle collision rates are enhanced under E
- •IEP (iso-electric point) mechanism due to pH change
- •Coagulation induced by metal ions released from anode
- •In-situ chemical precipitation
- •Natural convection -- electrodecantation

Speciation Diagram of Cu/H₂O System

EDA Characteristics

- EDA forms a 1:1 or 2:1 complex with Cu²⁺
- The charge of the Cu(EDA) or Cu(EDA)₂ complex is positive (2+).

Electrokinetic Behavior of Al₂O₃

- EDA does not effect the isoelectric point of AI_2O_3 .
- Cu(EDA) complex shifts the IEP of AI_2O_3 to higher pH values.

pH Changes during EC

- The suspension pH increases rapidly when an electric field is applied.
- If IEP of particles in the cathode chamber is between 6<pH<10, coagulation of particles may occur as pH approaches the IEP of particles.

E = 3.5 V/cm

Electrocoagulation of Al₂O₃

A

Kinetics of Removal of Dissolved Copper

•Copper is removed by plating and/or by copper hydroxide formation in the bulk.

Electrocoagulation Tests on

0.4% Al₂O₃ (with different Fe³⁺ level)

The presence of Fe^{3+} in slurry slightly increases the rate of Al_2O_3 coagulation

Electrocoagulation Tests on 0.1% Al₂O₃ (in both chambers)

Stability of 0.2% Al₂O₃ (no applied field)

• When $K \ge 2.78$ mS/cm, Destabilization starts to occur.

Electrocoagulation Tests on 0.1% Klebosol SiO₂ Slurries

Stability of 0.2% SiO₂ (no applied field)

•Suspension of Klebosol SiO₂ is very stable.

Electrocoagulation Tests on 0.1% Klebosol SiO₂ Slurries

Electrocoagulation Tests on 0.4 % Klebosol SiO₂ Slurries

Electrocoagulation Tests on Klebosol SiO₂ Slurries

Electrokinetics Behavior of SiO₂

Electrocoagulation (EC) Tests on Actual CMP Waste Slurry -1

Electrocoagulation (EC) Tests on Actual CMP Waste Slurry-2

Summary

- 1. Aqueous Alumina suspensions can be destabilized by the application of an electric filed.
- Copper can be removed simultaneously with the solids, either by in situ precipitation or by plating out onto the cathode.
- 3. When Al₂O₃ slurry is put into cathode chamber, the Al₂O₃ particles coagulate via "IEP" mechanism. When it is put into anode chamber, coagulation may be caused by "Ionic Strength Increase" or locally high particle concentration.
- 4. The presence of Fe³⁺ (up to 100ppm) may not dramatically enhance the AI_2O_3 coagulation.

Summary

5. Klebosol SiO_2 in cathode chamber appears to coagulate by the presence of ferric iron that migrate from the anode chamber.

6. When either 0.4% or 0.1% SiO_2 is contained in the anode chamber, no coagulation is observed, this indicates that "IEP" mechanism can not be used to explain SiO_2 coagulation, a new explanation needs to be found.

Acknowledgements

- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- S. Tousi & B. Gotlinsky (Pall Corp.)
- Matt Felix (undergraduate student, U of A)

