

SIA Roadmap Surface Prep Team

Bob Kunesh, Scott Becker 01/19/99

<u>**'98 UPDATE**</u>

- Table 21 revised, based on international reviewers input, and forwarded on 1/11 for posting on web
 - 3 changes recommended for '98, 2 implemented
 - footnotes D, F & G changed to improve clarity
 - organic contamination targets left unchanged data do not support yield impact
- Updates made in '98 focus on correcting errors
 - numerical targets left unchanged, in the absence of a model or literature reference to support change

Table 21 Surface Preparation Technology Requirements						
Year of First Product Shipment	1997	1999	2002	2005	2008	2011
Technology Generation						
DRAM 1/2 Pitch	250nm	180nm	130nm	100nm	70nm	50nm
Logic Isolated Line	175nm	140nm	100nm	70nm	50nm	35nm
Front End of Line (A)						
DRAM critical area (cm ²) (B)	0.16	0.32	0.68	1.6	3.14	6.4
Logic critical area (cm²) (C)	0.06	0.1	0.13	0.19	0.24	0.43
DRAM GOI D_0 (cm ⁻²) (D)	0.06	0.03	0.014	0.006	0.003	0.001
Logic GOI D _o (cm ⁻²) (D)	0.15	0.15	0.08	0.05	0.04	0.03
Light scatterers (E)						
DRAM(cm-2)	0.3	0.15	0.075	0.03	0.015	0.01
Logic (cm-2)	0.75	0.5	0.4	0.25	0.2	0.15
Particle size (nm)	125	90	65	50	35	25
Critical metals (atoms/cm ²) (F)	5.0E+09	4.0E+09	2.0E+09	1.0E+09	< 1.0E+09	< 1.0E+09
Other metals (atoms/cm ²) (G)	5.0E+10	2.5E+10	1.5E+10	1.0E+10	5.0E+09	< 5.0E+09
Organics/polymers (C atoms/cm ²) (H)	1.0E+14	7.0E+13	5.0E+13	3.5E+13	2.5E+13	1.8E+13
Oxide residue (O atoms/cm ²) (I)	1.0E+14	7.0E+13	5.0E+13	3.5E+13	2.5E+13	1.8E+13
Back End of Line (J)						
Particles (cm ⁻²)	0.3	0.15	0.1	0.06	0.045	0.03
Particle size (nm)	125	90	65	50	35	25
Metals (atoms/cm ²) (K)	1.0E+12	5.0E+11	2.0E+11	1.0E+11	< 1.0E+10	<1.0E+09
Anions (atoms/cm ²) (L)	1.0E+11	1.0E+11	1.0E+11	1.0E+11	1.0E+11	1.0E+11
Organics/polymers (C atoms/cm ²) (M)	1.0E+14	7.0E+13	5.0E+13	3.3E+13	2.5E+13	1.8E+13
Oxide residue (O atoms/cm ²) (M)	1.0E+14	7.0E+13	5.0E+13	3.5E+13	2.5E+13	1.8E+13

A. Starting wafer up to deposition of the pre-metal dielectric

- B. Bits/chip multiplied by the critical dimension squared
- C. Transistors/chip multiplied by 10 times the critical dimension squared

D. Based on the critical area at 99% yield per critical step (with 10 critical steps in the entire flow, the total device defect density would be approximately 10 times this number); suggested short loop GOI test (includes some reliability failures): 10 Mvolt/cm for 100 sec.

E. Modeled for 99% yield, as in Table 20. 20% kill ratio assumed.

F. DRAM requirement for sum of Ca, Co, Cu, Cr, Fe, K, Mo, Mn, Na, Ni, W measured aftercritical clean for a gettered wafer

G. DRAM requirement for sum of AI, Ti, V, Zn (Ba, Sr, and Ta if present in the factory) measured aftercritical clean for a gettered wafer

H. Measured aftercritical clean including pre-gate, pre-poly, pre-metal, pre-silicide, pre-contact, and pre-trench fill

I. Measured pre-metal, pre-silicide, and pre-contact

J. Poly-silicide metal dielectric deposition through passivation

K. K, Li, Na, measured after critical clean

L. CI, N, P, S, F measured aftercritical clean. Assumes no fluorinated oxide.

M. Measured aftercritical clean of a metallic surface region

'99 SCHEDULE

- March 17: FEP Roadmap Team meeting
 - definition of all table line items
 - international input on table line items
- April 19: International TWG face-to-face
 - review first draft
 - topical outline of the text
- * June 15: First draft complete
- * July 8: Present Roadmap at Semicon West
- Aug. 30: Final draft complete
- ***** Sept. 17: Document frozen

'99 SURFACE PREP TEAM:

Bob Kunesh Scott Becker Steve Bay Joe Rosamilia Fred Kern Anthony Muscat Glenn Gale Jay Guan George Brown Trish Smith Mike Olesen

r-kunesh@ti.com sbecker@fsi-intl.com steve.bay@cfmtech.com jmr@lucent.com fkern@us.ibm.com muscat@erc.arizona.edu glenn.gale@sematech.org jay.guan@sematech.org g-brown4@ti.com tsmith@ti.com olesenm@verteq.com

'99 SURFACE PREP TEAM:

Responsibility FEOL **GOI D**0 light scatterers critical metals other metals organics/polymers oxide residue BEOL particles metals anions organics oxide residue NEW surface roughness

<u>Who</u>

Brown Kunesh

Muscat, Bay

Kunesh

Muscat, Bay

Rosamilia, Guan