Thrust B

Effect of Si Surface on Cu Nucleation in Aqueous Solutions

Sangwoo Lim¹ and Christopher E. D. Chidsey²

¹ Dept. of Electrical Engineering, Stanford University ² Dept. of Chemistry, Stanford University

Background and Purpose

- As the device sizes shrink, the tolerance for metal contamination levels on Si surfaces become smaller.
- What is the effect of the surface preparation and chemical state on the metal deposition?
- By understanding the relationship between the Si surface and metal deposition, we hope to find methods to suppress metal deposition and to reduce chemical consumption.

Experimental Methods

- Preparation of H-Si(111)
 - $H_2SO_4:H_2O_2 = 4:1$ (10min, @ 90°C)
 - DIW rinse
 - Ar-sparged $40\% \text{NH}_4\text{F}$ (15min, @RT)

- Cu contamination
 - Cu-spiked DI water
 - deposition time
 - Cu²⁺ conc. in DI water
 - misorientation angle

- Preparation of H-Si(100)
 - 1% HF (2min, @RT)
 - DIW rinse
 - $H_2SO_4:H_2O_2 = 4:1$ (4min, @ 90°C)
 - DIW rinse
 - 1% HF (2min, @RT)
 - (Methanol/ I_2 treatment)
- Cu contamination
 - Cu-spiked DI water
 - Cu²⁺ conc. in DI water
 - surface preparation time

- Synchrotron Radiation TXRF
 - Measurement of Cu coverage

(detection limit: 1×10^8 atoms/cm²)

- ATR FT-IR
 - Hydrogen termination & microroughness
- SEM and STM
 - Surface imaging of Cu nucleation and Si surface

Cu Deposition on H-Si(111): Cu²⁺ Conc.

Cu²⁺ concentration in DI water [ppb]

Cu Deposition on H-Si(111): Depo. Time

Dipping Time [sec]

The rate limiting step for electrochemical Cu deposition is surface reaction, not diffusion of Cu^{2+} to the surface.

FT-IR Spectra of H-Si(111)

Brewster angle p-polarized transmission FT-IR

Highly misoriented H-Si(111) surface has more stepped H-Si which is linearly proportional to the misorientation angle up to 8°.

Open Circuit Potential

More misoriented Si(111) surface: more negative OCP more driving force for Cu²⁺ reduction

Cu Nucleation and Step Density

Misorientation angle of Si(111) [degree]

Change of step density on H-Si(111) didn't affect the deposited Cu amount.

SEM Images of Cu Nuclei

Cu²⁺: 200 ppb in DI water Deposition time: 10 min

- Cu nucleation seems to occur on the step edges preferentially.
- The number of nucleus is increased on highly misoriented H-Si(111).
- The size of nuclei on 2° off H-Si(111) is somewhat bigger than those on 8° off.

ATR FT-IR Spectra of H_x-Si(100)

Cu Concentration on H_x-Si(100)

Treatment time in etch solution [sec]

There is no dependence of Cu amount upon the H_x -Si(100) surface modification.

Cu Conc. on H_x-Si(100) &H-Si(111)

Cu nucleation on H-Si(111) is much less reactive than that on H_x -Si(100). Possible reason: the small number of kink site or dihydride groups on H-Si(111).

Cu Nucleation on H_x-Si(100)

 2° H-Si(111)

 H_{x} -Si(100)

Deposition time: 10 min

Cu nucleation on H_x -Si(100) is very fast and occurs at all surfaces, This may be because the Si(100) surface has many kink sites at which Cu²⁺ can be reduced to metallic Cu.

Cu Conc. on H- and MeOH-Si(100)

Concentration of Cu²⁺ in deionized water [ppb]

Methoxy terminated Si(100) : higher resistance to Cu contamination Possible reason: unreactive methoxy termination of former dihydride sites.

ATR FT-IR Spectra

Summary

- Cu deposition on H_x -Si(100) in DI water was faster by one order of magnitude than that on H-Si(111). We suggest that the small number of kink sites or dihydride groups is the reason for the lower Cu concentration on H-Si(111).
- Methoxy terminated Si(100) surface showed higher resistance to Cu contamination than H-Si(100). The lower reactivity of methoxy terminated sites may be the reason.
- Contrary to our expectation, the change of step density (1° to 8° off) on H-Si(111) didn't affect the amount of deposited Cu. We suggest that this is because the change in kink site density is small compared to that between Si(100) and Si(111).
- One method to suppress the Cu contamination on Si surface may be to control the number and reactivity of dihydride sites on the surface.