Effect of Surface Roughness on Adhesion

Removal Force (nN)

Tace.

Effect of Surface Roughness on Adhesion

pН

Effect of Surface Roughness on Adhesion

- * not etched
- * atomically smooth
- strong adhesion w/ PSL

- * anisotropically etched (KOH)
- * rough surface (35 nm peaks)
- * weak adhesion w/ PSL

Conclusion--1st Generation Model

•Ideal vdW models and Equilibrium Models (JKR, DMT, MP) are limited to:

geometric (spherical particles interacting with flat surfaces)morphology (smooth systems)

•1st Generation model incorporates these factors

Conclusion--1st Generation Model (cont'd)

•Aqueous media can help prevent or promote surface adhesion by:

•Changing the surface chemistry of the interacting surfaces

•Changing the morphology of the interacting surfaces

•Particle and surface roughness is a controlling factor in particle adhesion

Second Generation Model

1st generation model

- ideal geometries
- ability to model contact area
- uniform microscopic morphology

2nd generation model

- any geometry
- random microscopic morphology
- compression/deformation of surface asperities
- chemical heterogeneities
- bonding
- settling (tilting, shifting)
- statistical information

Second Generation Model

3-D Reconstruction

Random Surface Generation

Surface Interaction

$$F_{attr} = -\frac{A \cdot (Area cynnder)}{6 \cdot \pi \cdot D^3}$$

• Elements are placed every nm

