

Computer Simulation of PFC Abatement: Mechanisms and Neutral Transport

Thrust A Teleconference 10/7/99 Mark Kiehlbauch Eric Tonnis David Graves UC-Berkeley Dept. of Chemical Engineering

- IC power = 200-1400 W; outlet pressure = 50,100,200,500 mtorr; 2 different coil geometries. Input gas flow = $50/100 \operatorname{sccm} \operatorname{CF}_4/O_2$.
- 2-D (r,z) fluid plasma/neutral model with azimuthal symmetry.
- Electron/ion continuity; ion momentum; electron energy, $T_i=0.2 \text{ eV}$.
- Helmholtz, Poisson equations.
- Neutral overall mass, momentum and energy balances.
- Stefan-Maxwell multicomponent diffusion relations solved for N_s species.
- N_s-1 species mass balances.
- Coupled to plasma model via species (chemistry), momentum and energy collisional source terms.
- 8 charged & 14 neutral species. 65 gas phase & 3 surface rxns.

Destruction Efficiency vs. Power for CF_4/O_2 Abatement

The Effect of Power on CF4 Dissociation

Abatement Mechanisms

- Abatement is governed by CF₄ destruction. Only 6% of dissociated CF₄ ever recombines (CF_x is "burned" by O). How do we maximize CF₄ dissociation?
- $R_{CF4} = k*N_{CF4}*Ne$
 - $k=f(T_e)$, so maximize T_e by minimizing N_{neut} through high T_n and low pressure.
 - Maximize N_{CF4} in plasma zone. High T_n promotes diffusion, however diffusive flux to plasma zone of CF4 ~ 1-10% of convective flux.
 - Maximize N_e by high plasma power.
- Plasma expansion with power counters increased neutral velocity (residence time ~ constant).
- Ion neutralization at walls dominates gas phase neutralization for CF_x^+ ($R_{surface} \sim 5*R_{gas}$).

Effect of Input Parameters

<u>Power</u>: Increases N_e , T_n , T_e . N_e spreads axially to maintain residence time in plasma zone. Abatement increases.

<u>Pressure</u>: Decreases T_e , slightly increases N_e and T_n . Abatement decreases.

<u>Coil Spacing</u>: Decreases peak T_e and N_e but lengthens plasma zone. Abatement is unchanged. Shift product distribution towards CO vs. CO_2 .

Experimental Results: Abatement Plasmas

Col

Experimental rotational temperature of C_2 are 5000 - 10000 K.

This is a measurement of the roto-vibrational structure of emission from electronically excited states.

Is this indicative of the true neutral temperature?

- Ion-Neutral elastic & charge exchange collisions.
- Franck-Condon effects from electron impact dissociation.
- Gas phase thermochemistry.
- Electron impact vibrational excitation of neutrals.
- Surface chemistry.
- How much of ion & electron energy flux to wall returns to plasma?
- What is proper treatment of wall T_n and velocity BCs?

Wall Boundary Conditions

- At low densities, continuum conditions no longer apply. We can mitigate the effect of this through "slip," or "jump" BCs at surfaces.
- This also partially decouples the neutral temperature solution from the unknown wall temperature BC.

V Slip	T Slip	DP (mtorr)	Tn (K)	DRE (%)	T Jump (K)	Vel. Jump (cm/s)
No	No	90	1700	80	0	0
No	Yes	112	2083	89.4	405	0
Yes	Yes	95	2062	89.5	402	1811
Experiment		117 ?	?	98.3	?	?

$R_{mod} = 2 cm$	R_{expt} =2.54 cm
L_{mod} =59 cm	R _{expt} =38 cm

 $50/100 \operatorname{sccm} \operatorname{CF}_4/\operatorname{O}_2$ Power = 1000 W Pressure = 200 mtorr

Surface Processes and Neutral Temperature

Ion Energy to Walls = $\sum \Gamma_{ion} (\Phi_{sheath} + \Phi_{ionization}) * SA$ Electron Energy to Walls = $2 * T_e * \Gamma_{electron} * SA$ Surface Reaction Energy at Walls = $\sum \Delta H_{rxn} * R_{rxn} * SA$

• Deposit 25% of this energy into neutral source term in finite difference cell nearest wall.

Original $S_{neut} = 260 \text{ W}$ Ion $S_{neut} = 135 \text{ W} (55\% \text{ KE}, 45\% \text{ PE})$ Electron $S_{neut} = 30 \text{ W}$ Surface $S_{neut} = 25 \text{ W}$ New $S_{neut} = 451 \text{ W}$ The increases of the provided set of the provide

Cell

Tn increases from 2062 to 2411 K DP increases from 95 to 113 mtorr DRE increases from 89.5 to 92%

Bounding Neutral Temperature

• Since the neutral source terms are non-quantitative, but the temperature for a given source amount should be reasonable, we can bound T_n by arbitrarily multiplying the source term by a factor at all points in the model.

Source Term Multiplier	Tn (K)	DRE (%)	DP (mtorr)	S _{neut} (W)
1	2062	89.5	95	260
2	3055	92.9	138	530
2.5	3522	93.7	157	660.2
3	4009	94.4	175	793
1, with 25% of wall energy	2411	92	113	451

- HDP tools generally treated as nearly isothermal at Tn ~ 300 - 600 K.
- Abatement plasmas are quite different than, e.g. industrial HDP etch tools.
 - Aspect ratio and large radial and axial gradients
 - Higher pressure
 - Higher plasma densities
- At more typical plasma densities, N_e~7*10¹¹, do we see the same effects?

DRE = 42%, $T_n = 1408$ K, DP=48 mtorr

$$V_{\text{max}}/V_{\text{in}} = 3.8$$

- PFC abatement is governed by initial electron impact destruction of PFCs (high power, high T_e, T_n).
- PFC abatement plasmas have large gradients in temperature, velocity and density. How large is large?

Future Work

- Simpler plasmas on experimental system with better diagnostics. Comparison to experiment for N_e , T_e , radical densities etc. should allow iteration towards a "state of the art" model of: O_2 , CF_4 , CF_4/O_2 plasmas with better treatment of surface and gas phase chemistry and mechanisms of plasma/neutral energy transfer.
- •Better abatement models.
- What is the neutral temperature in a high density plasma? Does it impact performance?

Acknowledgements

- Ales Fiala & Sergej Mahnovski UCB
- Phi Tabada, Deana Tolentino, Alan Tam UCB
- Rusty Jewett Litmas
- NSF/SRC ERC Industrial Interactions:
 - Laurie Beu Motorola
 - Mike Hartig Motorola
 - Avi Kornblit Lucent
 - Mike Sherer ATMI
 - Vic Vartanian Motorola