

Use of Air-Gaps as a Low-K Dielectric

Benjamin P. Shieh, K.C. Saraswat, M.D. Deal, and J.P. McVittie *The Center for Integrated Systems, Stanford University*

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

1

Outline

- Background and Motivation
- Electrical Performance
- Integration Issues
- Thermal Reliability
- Electromigration Reliability
- Summary

Why Air Gaps ?

- Dielectric constant, K, approaching 1.
- Reduces dominating line to line capacitance.
- Interlevel SiO₂ left intact.
- Simple integration.
- Compatible with scaling trends air gaps easier to form with higher aspect ratios.
- Good vehicle to study tradeoffs between performance & reliability

Environmental Impact

- No new materials or precursors
 - SiH₄, O₂, Ar
 - can use current toolsets (PECVD, HDP-CVD)
 - do not need new etch or CMP processes
- Known environmental issues
 - chamber clean: presently worked on by others

Air-Gap Formation

• Air-gap formed by "breadloafing" due to smaller view angle at bottom of trench.

Greater "breadloafing" — Larger air-gaps

SEM of Experimental Air-Gaps

Experimental Capacitance Data

0.3um/0.3um line/space

0.4um/0.4um line/space

 ~ 33 to 40 % capacitance reduction from HDP oxide gapfill for 0.3µm lines/spaces

• 0.3um/0.3um line/space, 6.6V applied.

Import SPEEDIE Air-gap Profile to Raphael

Deposition simulated using SPEEDIE

• Capacitance extraction using TMA Raphael

SEM Images of Seam and Void Extension

Line/Space = $0.3\mu m/0.3\mu m$

 $Line/Space = 0.4 \mu m/0.4 \mu m$

Proposed Solution: Two Step HDP CVD Process

• First step : High deposition to sputter etch (D/S) ratio conditions to form initial void

– High Gas Flows, Low Substrate Bias

• Second step : Decrease D/S ratio to prevent seam from forming, limit extent of void above metal lines, and provide local planarization

– Low Gas Flows, High Substrate Bias

Profile After First Step

Line/Space = $0.3\mu m/0.3\mu m$

 $Line/Space = 0.4 \mu m/0.4 \mu m$

Profile After Second Step

Line/Space = $0.3\mu m/0.3\mu m$

Line/Space = $0.4\mu m/0.4\mu m$

Control of Air-Gap Size and Shape

- Air-gap size and extension above metal lines can be controlled by varying deposition conditions.
- Samples shown held up to CMP

Layout Dependence of Air-Gaps

• Additional deposition flux at end of metal lines results in smaller air-gaps which may help via reliability.

Simulated Joule Heating and Thermal Reliability

Material	ΔT above $T_{substrate}$	
Homogeneous SiO ₂	4.9 K	Air-gap Al
Homogeneous low-K	76.7 K	
Air-gaps w/ SiO ₂ ILD	5.2 K	SiO_2 SiO ₂ Thermal Resistance Circuit

- Heat conduction to substrate limited by interlevel dielectric
- Interconnects with air-gaps show comparable thermal performance to conventional SiO_2 .

Electromigration Reliability

• Thin SiO₂ sidewall may lead to shorter electromigration lifetimes.

Simulation Methodology to Assess Electromigration Reliability

- 1) Assume fracture stress for dielectric material
- 2) Solve for stress distributions in interconnect geometry as function of loading
- 3) Calculate hydrostatic stress in the metal which occurs simultaneously with dielectric failure
- 4) Use hydrostatic stress to determine MTTF using MIT reliability models by Thompson, et al.

Import SPEEDIE Air-gap Profile to MARC for Electromigration Induced Stress Analysis

Contour Plots of Maximum Principal Stress

• All structures are shown with the same average hydrostatic stress in the Al (300 MPa)

Simulated Reliability/Performance Tradeoff

Time to Failure and Percent Reduction in Capacitance vs. Sidewall Thickness

Preliminary Electromigration Data

Summary and Conclusions

- Developed methodology for assessing tradeoffs between reliability and performance for IC interconnects.
- Capacitance reduction using air-gaps comparable to most low-K materials under investigation.
- Air-gap size and shape can be controlled to address CMP and via reliability issues.
- Thermal performance of air-gaps comparable to homogeneous SiO₂.
- Preliminary electromigration data show no difference between air-gaps and homogeneous SiO₂.

Future Work

- Further integration and reliability studies
- Integration of Air-Gaps with Dual Damascene Copper.
- Extension of air as dielectric to "Air-Bridges".

Acknowledgements

- This work was supported by ERC, DARPA and Texas Instruments.
- R. Scott List, Somnath Nag, Larry Ting, and Bob Havemann, Texas Instruments.
- Per Sverdrup and Professor Kenneth Goodson, Mechanical Engineering Department at Stanford University