The Effect of Absorbed Moisture on the Etching of Doped Oxide Films

Adam Thorsness, Gerardo Montano, and Anthony Muscat Department of Chemical and Environmental Engineering University of Arizona, Tucson, Arizona

> Presenter: Adam Thorsness agt@u.arizona.edu / (520) 626-9186

NSF/SRC Engineering Research Center for Environmental Benign Semiconductor Manufacturing, Thrust B Teleconference April 13, 2000

Outline

- Objectives
- Experimental
- Film Chemistry Before Etching
- Film Chemistry After Etching – Water Soluble P-acid Film Formation
- Etching Results
 - Induction Time
- Conclusions
- Future Work

Project Objectives

- Establish empirical dependencies (etching rate, T, time, and p_{AHF}) for AHF etching of doped oxide films.
- Assess relative importance of absorbed to product water on etching.
- Propose a mechanism for doped oxide etching that explains selectivity.
- Identify a process that does not require a water rinse to remove etching by-products.

ESH Impact

- Reduced Resource Use
 - Lower water, ultrapure N₂, chemical and exhaust (energy) usage.

Total Cost = Water + Chemicals + Labor + Capital + Cleanroom Source: C. A. Peterson, Microelectronic Manufacturing and Testing, May, 1988.

- Smaller chemical load in waste streams.
- Smaller tool footprint.
- Lower Worker Exposure to Chemicals

A

Film Formation

- PECVD Oxide Film Stack
 - 2K Å TEOS
 - 5 wafer batch (Novellus)
 - $T = 350^{\circ}C$
 - Gases: O₂, TEOS
 - 5K Å BPSG (3.5%B/4.0%P)
 - 5 wafer batch (Novellus)
 - $T = 350^{\circ}C$
 - Gases: N₂, SiH₄, N₂O, PH₃, B₂H₆
- Anneal
 - Batch Furnace
 - Held at temperature for 59 min. in N₂
 - As Deposited, 500°C, 750°C, 900°C

Film Etching

• FSI Excalibur ISR (In Situ Rinse) Etching Tool

- Single 8" wafer process
- Heated using hot N₂ and chamber heater
 - All results at 55°C
- Anhydrous HF process
- Post-etching rinse
- Film Diagnostics
 - FTIR Spectrometer
 - Ellipsometer

Experimental Process and Analysis 5K A BPSG Films on 8 inch Wafers

Experimental Process and Analysis con't Film Thickness Determination Using Ellipsometry

- 200 Wavelengths
- Center Fast
- 95% Confidence Intervals
 Ranged from + 25 45 Å
- Standard Deviations (Center not Used)
 - Pre-Measurements
 - $E(\sigma) = 22.2 \text{ Å}$
 - Post-Measurements
 - $E(\sigma) = 56.2 \text{ Å}$

Experimental Process and Analysis con't Chemical Species Analysis Using Transmission FTIR

- Peaks represent specific stretching or bending vibrational modes of a chemical species.
- Peak Areas are proportional to the absolute amount.

Overview

- First Steps
 - Evaluate the initial condition of the films.
 - Observe changes in film composition over time using Transmission FTIR.

- Pre-Analysis of films
- Etching
 - AHF at 55°C
- Post Analysis of Films and Residue

FTIR of As Received Wafers

Referenced FTIR of As Deposited Film as a Function of Time

Referenced FTIR of 900 °C Annealed Film as a Function of Time

P=O, Absorbed HO-H, and SiO-H Referenced FTIR Peak Areas

SiCH₃, CH₃ Referenced FTIR Peak Areas

P=O Reacts with Absorbed Water

• Slope \approx 1 suggests that 1 absorbed HOH reacts with 1 P=O.

Chemistry of BPSG Films Before Etching

- Decrease in P=O peak area indicates that P=O reacts as wafers are aged.
- The lower the anneal, the more water absorbed and the larger the decrease in the P=O peak area.
- FTIR feature indicative of PO-H could be present in envelope of absorbed water.
 - Shoulder near 3300 cm-1 in As Deposited FTIR.
- 1:1 absorbed HOH to P=O suggests following reaction.

New Features Appear in FTIR After AHF Etching

The New Features are a Function of Anneal

Water Soluble Residue on an As Deposited Wafer

New Features Appear in FTIR After AHF Etching

Residue's Composition Changing With Time

Water Soluble Film Forms on the Wafer Surface

Comparison of an As Deposited Film in O-H Stretching Region

Wafer AD10: etched then stored for 7 days in wafer box; post-etching FTIR spectrum, pre-rinse FTIR spectrum, post-rinse FTIR spectrum.

Comparison of Various Films in O-H Stretching Region

• Features seem to be related to anneal temperature.

Comparison of Etched, Rinsed Film to Wafer Dipped in 85% H₃PO₄ / 15% HOH Solution

Chemistry of BPSG Films After Etching

• FTIR indicates presence of *P*-containing acid on wafer surface.

- Acid film visually present on wafer surface.
- OH-bearing components in films on wafer surfaces depend on annealing temperature.
 - FTIR (not shown) indicate that wafer characteristics, not etching time determines composition of P-containing film.

55°C AHF Etching Results: No Rinse

Induction Time Associated with Etching

Induction Time Dependence on Peak Areas

- Induction time drops when absorbed water is increased and P=O is reacted.
- Note 750°C induction t much longer and rate lower than at 900°C, even though 750°C film contains same absorbed HOH and less P=O at start as well as lower anneal T. Other factors?

Conclusions

- Absorbed water reacts with P=O groups in the BPSG film.
- Water soluble P-acid products after AHF etching depend on initial film characteristics.
- Induction time and AHF etching rate correlate with absorbed water/P=O.
 - Sensitive dependence on absorbed HOH and P=O at highest anneal T's.
 - Etching behavior depends on initial film character even though ratio of product water to absorbed water large.
 - Results suggest that induction is due to attack of HF at weakest X-O bonds in film.
 - *HF and HOH diffusion through film.*
 - Film density and stress.

Future Work

- Measure etching activation energies for annealed films.
 - Annealing dehydroxylates film producing Si-O-Si.
 Si-O-Si, Si-OH, B-O, P-OH, P=O.
- Investigate additives to react P-acid from surface.
 - Control product layer thickness.
 - Dependence on P-acid product/anneal?
- Does B form $B(OH)_3$?
- Investigate film chemistry during induction using integrated processing apparatus.

Acknowledgements

- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- *FSI*
 - Christina Ellis, Ron Hanestad, and Jeff Butterbaugh
- NSF
 - Career Award (DMR-9703237)
- Air Products
 - Scott Beck
- Motorola
 - Scott Lawing
- MEMC
 - Larry Shive