

Copper CMP Effluent Flow in a Semiconductor Facility

ERC - Teleseminar - April 6th 2000 Massachusetts Institute of Technology Benoit Maag

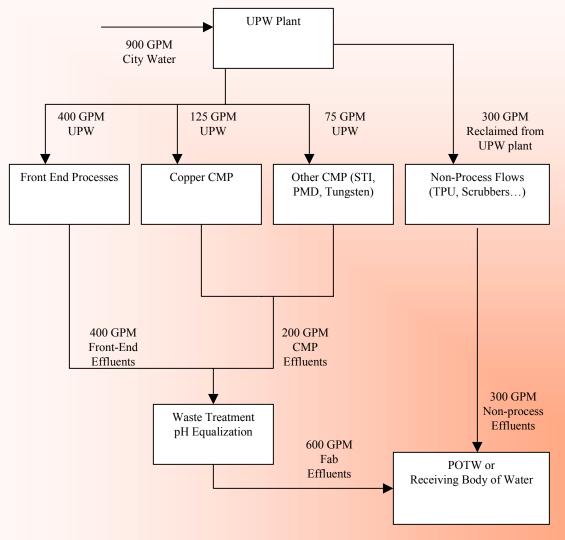
Copper CMP Effluent Flow in a Semiconductor Facility Massachusetts Institute of Technology - Benoit Maag

Outline

- A simple facility model
 - Assumptions
 - Flows
- A simple model slurry
- Copper flows
 - Results
 - Copper Discharge Regulations

A simple facility model - Assumptions

- 6 300 8-inch wafers per week
- 900 GPM city water flow
 - 600 GPM UPW
 - 400 GPM Front-End
 - 200 CMP
 - 300 GPM non UPW (reclaim) for non-process
- Microprocessor
 - 5 copper CMP steps (1 micron removed per step)
 - 3 non-copper CMP steps (STI, PMD, Tungsten)



A simple facility model - Assumptions

- Equipment
 - 20 dry-in / dry-out machines
 - 10 GPM constant flow per machine (copper and non-copper)
 - 40% idle time
 - Throughput 25 wafers / hr
 - 2 GPM process flow, 8 GPM non-process + post-CMP clean
 - Slurry flow 200 ml /min
 - Process time 2.5 min / layer

A simple facility model - Flows

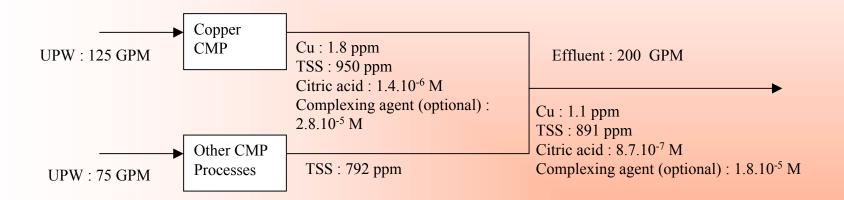
Copper CMP Effluent Flow in a Semiconductor Facility Massachusetts Institute of Technology - Benoit Maag

A simple model slurry (1)

• Copper polish step

Chemical	Dosage	Function		
Acid for pH-control	2.2.10 ⁻⁴ M	Keep pH at the desired level throughout		
Citric acid	pH around 3.5	the CMP operation		
Oxidizer	5 % vol H ₂ O ₂	Oxidize copper since copper oxide is		
Hydrogen peroxide	An optimal value exists.	more readily polished away by the		
Iodate	Several % is a typical value	abrasive particles than copper itself		
Hydroxylamine				
Abrasive particles	5 % wt	Abrasion of the copper oxide layer		
Alumina, 200 nm	3 – 7 % wt			
Surfactants	Depending on micelle size	To keep the abrasive particles suspended		
Complexing agent	9.10 ⁻³ M	To allow for larger quantities of dissolved		
EDTA, EDA, Citrate	Appropriate amount to complex	copper carried away by the spent slurry		
	copper at removal location	flow		
Corrosion inhibitor		To avoid unwanted corrosion of copper		
Benzotriazole (BTA)				

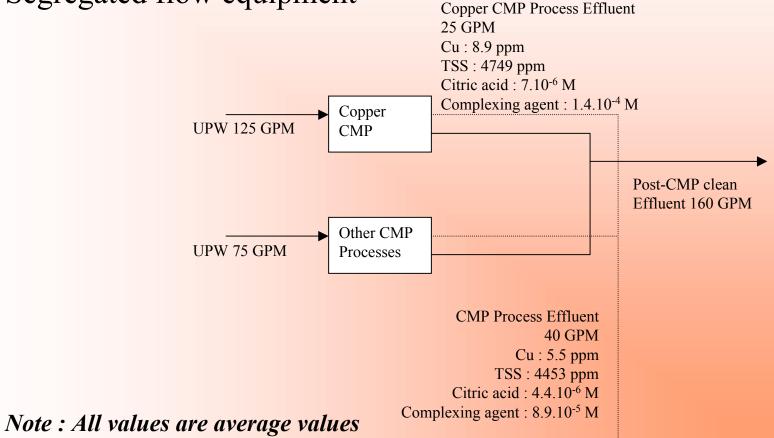
• (1) Based on Pr Raghavan's work. See for example the proceedings 'Fundamentals of CMP', NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing / Sematech, Nov 15-16 1999


A simple model slurry

- Other steps
 - Ta/TaN
 - Colloidal silica slurry (50 nm)
 - pH = 3.5 maintained by citric acid
 - Oxide, STI
 - Colloidal silica slurry (50 nm)
 - pH 11.5
 - Tungsten
 - Colloidal silica slurry (50 nm)
 - pH = 3.5

Copper flows

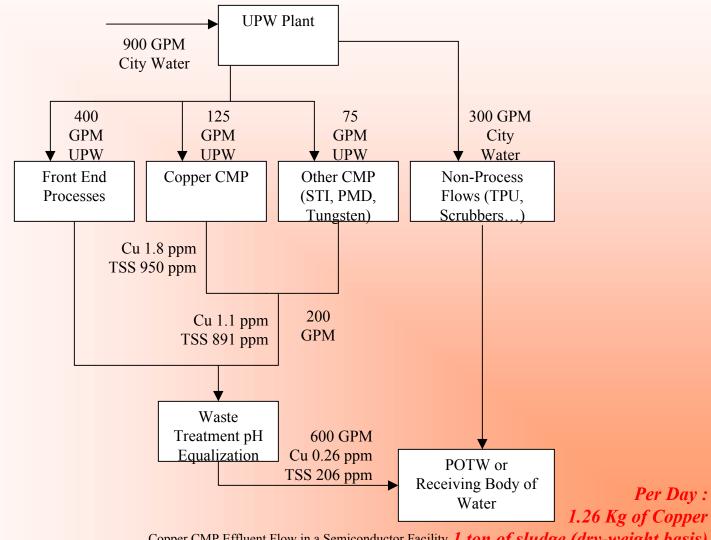
• Mixed flow equipment



• Note : All values are average values

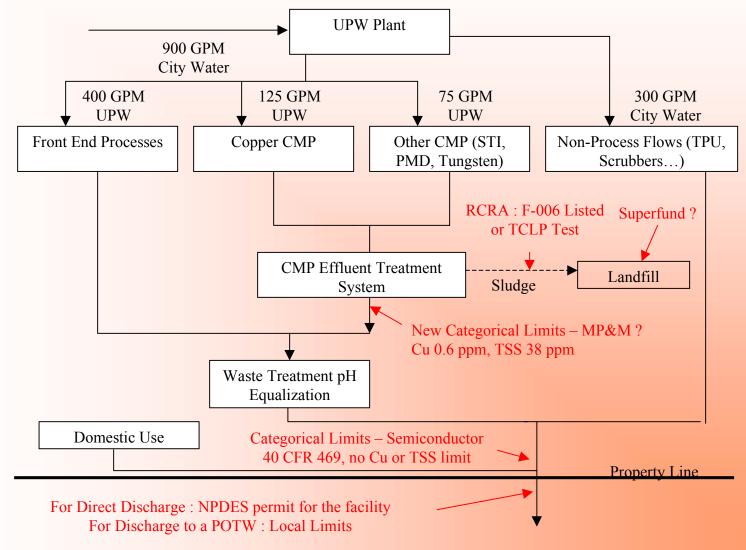
Copper flows

• Segregated flow equipment


ERC Teleseminar April 6th 2000

•

Copper CMP Effluent Flow in a Semiconductor Facility Massachusetts Institute of Technology - Benoit Maag


Copper Flows

Copper CMP Effluent Flow in a Semiconductor Facility 1 ton of sludge (dry-weight basis) Massachusetts Institute of Technology - Benoit Maag

Copper Discharge Regulations

Copper CMP Effluent Flow in a Semiconductor Facility Massachusetts Institute of Technology - Benoit Maag

ERC Teleseminar April 6th 2000

Copper Discharge Regulations

	Capacity /	Water Quality Criteria	POTW	POTW discharge limit	POTW annual	Industrial discharge local
	Average Flow	for copper (µg/l or ppb)	dilution		discharge limit	limit for copper
	MGD (1)		credit			
Deer Island, MA	1080 / 370	4.8 μg/l (acute)	70:1	none	none	1.5 mg/l (2)
		3.1µg/l (chronic)				
Clinton, MA	3 / 2.4	3.9 µg/l (acute)	1:1	6.0µg/l (max) (3)	none	1.5 mg/l (4)
		2.7µg/l (chronic)		4.6µg/l (average) (3)		
Austin, TX	60 / 42			10 µg/l		1.9 mg/l
Walnut Creek						
Sunnyvale, CA	29.5 / 15		none	8.6 µg/l (5)	715 lbs	0.7 mg/l (6)
						0.5 mg/l (7)

Table 2.9 : Local Limits at several POTWs

(1) MGD = Million Gallons per Day

(2) Under revision, will probably be 1.0 mg/l

(3) Expected, currently under discussion

(4) Under revision, will probably be 1.0 mg/l or lower

(5) 1-Day Average

(6) Maximum Concentration, 'Grab' Sample(7) Maximum Concentration, Composite Sample

Copper Discharge Regulation Main Issues

- Is sludge from copper CMP classified F-006 Hazardous ?
- Effluent concentrations are OK for *indirect* discharge but
 - local limits may decrease when copper goes mainstream because of mass load limitation at the POTW
 - Reduced bio-treatment efficiency
 - Increased copper in POTW sludge
 - Increased copper in POTW effluents (limit usually low (< 10 µg/l) for river discharge)
- Effluent concentration should be too high for *direct* discharge and treatment is necessary

The Next Step

- Model speciation of copper (dissolved, adsorbed, complexed) at the various stages of the process
- Compare models with tests on real effluents
- Test copper speciation after mixing with freshwater or wastewater
- Assess potential hazards to POTWs and the Environment