CMP Fluid Dynamics and Tribology

Ara Philipossian

University of Arizona Department of Chemical & Environmental Engineering Tucson AZ 85721 USA

Chris Rogers

Tufts University Department of Mechanical Engineering Medford, MA 02155 USA

December 2000

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Particle Settling & Pad Geometry

- Slurry:
 - How do abrasive particles flow during CMP?
 - Which types of abrasives tend to settle during flow?
 - Is abrasive settling a good thing or a bad thing?
 - How does abrasive flow pattern depend on process, slurry type and pad properties?
 - What is the critical abrasive size for determining defectivity?
- Pad:
 - How do grooves affect the overall fluid dynamics of the CMP process?
 - Is there an optimum groove design?
 - How do grooves and abrasive particles interact?
 - Can grooves act as particle gettering devices?

Scaled Schematic No. 1 (Macro-Scale)

200 mm

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing³

Scaled Schematic No. 2 (Macro-Scale)

2000 micron

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 4

Scaled Schematic No. 3 (Feature-Scale)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Scaled Schematic No. 4 (Micro-Scale)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Stokes Number

Response time of particle relative to response time of fluid

$$St = \frac{\rho_p D^2 u}{\mu L}$$

St < 0.1 particles do not have inertia and they follow the flow field

- St > 0.1 particles have inertia and they most likely do not follow the flow field
- ρ_p density of abrasive particle
 D mean aggregate diameter
 u relative pad-wafer linear
 velocity
- μ slurry viscosity
- L hydraulic diameter of groove (cross sectional area ÷ wetted perimeter)

Assumptions:

Creeping flow (i.e. Reynolds Number < 0.1) No particle-particle interactions No chemistry effects

7

No gravitational effects

Stokes Number Calculations

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

General Observations Regarding Stokes Number

- For most slurry systems, particles with diameters of 1 micron or less are predicted to follow the flow field:
 - Chances of coming into contact with the wafer surface is greater
 - 1 micron particles may cause scratches
- Particles larger than 1 micron are more likely to settle down into grooves or away from the wafer surface:
 - They may be less dangerous
- Changes in slurry viscosity (due to non-Newtonian or rheopectic behavior) can dramatically affect abrasive flow characteristics
- For a slurry system, both the Stokes Number and the particle size may need to be considered in order to determine the detrimental effects on surface defectivity

Selected Particle Trajectories

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing¹⁰

Selected Streamlines For Fully-Developed Flow

Effect of Groove Depth

Streamline imaginary curve in a mass of flowing fluid so drawn that at every point on the curve the net velocity vector is tangent to the streamline

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing¹¹

Ex: Volume Fraction Computation for a 2-minute Polish

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing¹²

Volume Fraction Data Can Be Manipulated to

Provide Useful Information on Geometric and Inertial Effects

• Fraction of time particles spend in the groove

- V volume of groove
- Q volumetric flow rate of particles

$$\tau_{groove}$$
 + τ_{gap} = τ_{total}

$$\varphi = \frac{\tau_{groove}}{\tau_{groove} + \tau_{gap}}$$

τ_{gap} residence time of particle in the gap between wafer and top surface of pad

Volume Fraction as a Function of Groove Shape

120 second polish ; 0.1 micron particles ; W X D = 500 X 300

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Volume Fraction as a Function of Particle Size

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing¹

Volume Fraction as a Function of Groove Depth

120 second polish ; 0.1 micron particles ; Groove Width = 500 micron

Groove Depth = 300 micron

Groove Depth = 600 micron

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

General Observations Re: Numerical Analysis

- Most differences observed at the bottom of the groove and not near the wafer-pad gap region
- V-groove results in the most even particle distribution
- U-groove results in the least even particle distribution
- Smaller aspect ratios result in more even particle distribution
- Fluid dynamics differences between 0.1 and 1 micron particles are very minor and can be ignored
- Fluid dynamics differences between 1 and 10 micron particles are major
 - Results are in qualitative agreement with the Stokes analogy presented earlier

The CMP System

- C: Slurry (or chemical or water) concentration
- D: Apparent distance between wafer and pad
- FF: Frictional force resulting from interactions between rotating pad, rotating wafer and entrained fluid
- P: Local pressure

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing¹⁸

Dual-Emission Laser-Induced Fluorescence (DELIF)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Flow Visualization using DELIF

20 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Concentration (C)

• How does fresh fluid (i.e. slurry, chemical or water) mix with old fluid ?

- Does the CMP system behave like a CSTR (Continuously Stirred Tank Reactor), a PFR (Plug Flow Reactor), or a Dispersed Vessel ?
- What is the mean residence time of fluid in the wafer-pad gap and on the pad surface
 ? How much of the slurry actually enters the wafer-pad gap ?
- How do process parameters such as down-force, platen speed, carrier speed, flow rate and type of wafer being polished affect 'C' ?
- How do polisher parameters such as conditioning methods, fluid injection schemes and the location of the carrier and platen affect 'C' ?
- How do consumable parameters such as slurry type, solids content, pH, pad type, groove pitch-depth-width-shape affect 'C' ?

Design of Experiment (43 Runs)

Variables:

- Pad Manufacturer (Cabot, Rodel & Freudenberg)
- Pad Groove Depth (0 40 mils)
- Wafer Pressure (2 6 psi)
- Platen Speed (30 90 rpm)
- Slurry Flow Rate (20 50 ml/min)

Constants:

- Groove Style (X-Y Grooving, 0.025" width)
- Head Speed (60 rpm)
- Head Position (3/4" wafer to platen edge)
- Injection Location (pad center)
- Conditioning (163 Micron diamond grit)

Response:

- Fresh (i.e. entering) slurry concentration vs. time

Repeatability

Slurry Flow Rate

24 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Platen Speed

Manufacturer: Freudenberg Slurry Flow Rate: **35 cc/min** Wafer Pressure: **4 psi** Platen Speed: **30 & 90 rpm** X-Y Groove Depth: **20 mils**

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Measuring the Slurry Age

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Data Analysis

Mean Residence Time Significant Factors

Factor	In Situ	Ex Situ
	Coefficient	Coefficient
Constant	22.63	13.96
Platen Speed	-12.69	-8.89
Flow Rate	-8.27	-3.70
Pad Manufacturer	-4.391	-4.11
Groove Depth	3.92	-2.50
Platen Speed-Platen Speed Interaction	8.35	5.73
Platen Speed- Flow Rate Interaction	6.39	4.87
Platen Speed- Groove Depth Interaction	x	-5.61
Flow Rate- Flow Rate Interaction	2.80	x
Groove Depth- Groove Depth Interaction	x	6.49
Platen Speed-Groove Depth-Groove Depth	x	9.23
Platen Speed- Platen Speed – Groove Depth	x	-4.41
Platen Speed – Down Force Interaction	-5.38	X
Correlation Coefficient	0.80	0.82

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing²⁷

Mean Residence Time Contour Plots

20 mil Groove Depth

30 rpm Platen Speed

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

How Much of the Fresh Slurry Supplied to the Pad Enters the Wafer-Pad Gap ?

Platen Speed (rpm)

2X increase in flow rate (i.e. from 22 to 44 cc/min) does not reduce Mean Residence Time by 2X !

It reduces MRT from 21 sec to only 16 sec !

Therefore only ~ 45% of fresh slurry supplied to the pad enters the wafer-pad gap region !

~ 55% gets totally wasted !

In-Situ Conditioning

Percent New Slurry

Mean Residence Time =

20 vs 11 sec

(there is tremendous potential to decrease flow rate during in-situ conditioning)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Data Analysis

Variance Significant Factors

	In Situ	Ex Situ
Factor	Conditioning	Conditioning
Constant	0.476	0.242
Platen Speed	-0.143	x
Flow Rate	-0.120	X
Groove Depth	X	-0.057
Platen Speed- Platen Speed Interaction	0.102	0.042
Flow Rate-Flow Rate Interaction	0.072	0.086
Groove Depth - Groove Depth	X	0.058
Interaction		
Flow Rate-Groove Depth Interaction	-0.086	X
Flow Rate-Groove Depth-Groove	0.094	X
Depth Interaction		
Correlation Coefficient	0.67	0.44

Depth (D)

• Does CMP occur via hydrodynamic lubrication, asperity contact or a combination of both ?

- How do process parameters such as down-force, platen speed, carrier speed, flow rate and type of wafer or film being polished affect 'D' ?
- How do polisher parameters such as conditioning methods and carrier designs affect 'D' ?
- Can d(D)/d(t) act as a predictor of pad life ?
- How do consumable parameters such as slurry type, solids content, pH, pad type, groove pitch-depth-width-shape affect 'D' ?
- How do pads bend locally & globally during the CMP process ?

Effect of Platen Speed & Pressure on 'D' (fluid = water)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing ³³

Local & Global Pad Bending

Thickness Profile Underneath Wafer and

Microscope Slide Cover

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing³⁵

Friction Force (FF)

- What is the magnitude of frictional forces acting on the pad-wafer system ?
- How do process parameters such as down-force, platen speed, carrier speed, flow rate and type of wafer or film being polished affect 'FF' ?
- How do polisher parameters such as wafer cooling and conditioning methods affect 'FF' ?
- Can d(FF)/d(t) act as a predictor of pad life ?
- How do consumable parameters such as slurry type, solids content, pH and pad type affect 'FF' ?
- How much 'FF' can organic VLK, ELK or ULK materials tolerate without getting de-laminated during CMP ?

Measuring Coefficient of Friction

Effect of Platen Speed on 'D' & 'FF'

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effect of Wafer Pressure on 'D' and 'FF'

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

'FF' for Various Wafer Pressures

Platen Speeds & pH values

(Fluid = H2O with In-Situ Conditioning)

Platen Speed (RPM)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Lubrication in Journal Bearings ... Stribeck Curve

Marks' Standard Handbook for Mechanical Engineers, Edited by Avallone & Baumeister, Tenth Edition, McGraw-Hill (1995)

Wafer Shape Effects

⁴² NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Coefficient of Friction and the Stribeck Curve Determination of the Tribological Mechanism

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Possible Asperity Contact Models

MODEL - I

3-body asperity contact model

MODEL - II

2-body asperity contact model

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing ⁴⁴

Partial Contact (Mixed Lubrication) Model

⁴⁵ NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Coefficient of Friction vs. Wafer Down Pressure

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Pressure Measurement Apparatus & Location of Pressure Taps on the Wafer

⁴⁷ NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Pressure Measurement Apparatus

Average Fluid Pressure vs. Wafer Radius

Platen Speed = 60 RPM ; Wafer Pressure = 3 PSI

Convex Wafer

Concave Wafer

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Varieties of Fumed Silica Slurry

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing ⁵⁰