Electrical and Material Properties of ALCVD ZrO₂ Gate Dielectrics

C.M. Perkins^{1,3}, P. McIntyre¹, K. Saraswat², and B. Triplett³

¹Department of Materials Science, Stanford University ²Department of Electrical Engineering, Stanford University ³Components Research, Intel Corp.

Presentation Contents

- Desired Properties of Scaled Gate Dielectric
- Atomic Layer Deposition (ALCVD)
- Electrical Properties
- Material Properties
- Annealing Studies
- Summary/Tech Transfer
- Future Work
- Acknowledgements

Desirable Advanced Gate Dielectric Properties for Sub-0.1 µm MOSFET

Physical Properties

- $K \sim 15 60$
- Thermally stable next to Si (no barrier layer; annealing)
- High-quality interface with Si

Electrical Properties

- EOT < 15 Å
- $J < 10^{-3} \text{ A/cm}^2 @ V_{DD}$
- $D_{it} < 5 \ge 10^{10} \text{ cm}^{-2} \text{ eV}^{-1}$
- V_{FB} , hysteresis < 50 mV (for + V_{DD} to - V_{DD} sweep)
- No C-V dispersion

ALCVD Reaction Cycle

•Self-limiting surface reaction steps with purge in between steps

Characteristics Features of ALCVD

Characteristic Feature Inherent Implication on Practical Advantage Film Deposition Self-limiting growth Thickness only dependent on Accurate and simple thickness number of deposition cycles control No need for reactant flux Large area capability homogeneity Large batch capability Excellent conformality Good reproducibility Separate dosing of reactants Favors precursors highly No gas phase reactions reactive towards each other, enabling effective material utilization High quality materials are Sufficient time is provided to complete each reaction step obtained at low processing temperatures

Improvement of High-K Candidates

Electrical Measurements

Gate Structure / Measurement Setup

<u>Dielectric Deposition</u> ALD by ASM Microchemistry Precursors : $ZrCl_4$, H_2O Temperature : 300 °C Test Conditions C-V : HP 4284A I-V : HP 4140B Test temperature : 25 °C Voltage step : 0.05 V Delay Time : 1 sec Cap Area = $7.225 \times 10^{-5} \text{ cm}^2$ Substrate Material Minimize series resistance p-epi (N_A ~ 1×10^{16} cm⁻³) p-sub (N_A ~ 1×10^{19} cm⁻³) 700 °C NH₃ RTN

Al backside contact

Leakage vs. EOT Comparison Between SiO_2 and ZrO_2 Dielectrics

At the same EOT, ALD ZrO₂ films show lower leakage current than conventional SiO₂ and RS ZrO₂ films
RS ZrO₂ data from: Lee, J.C. etal, *IEDM* 1999, to be published

•EOT was calculated from the accumulation capacitance of HFCV (1 MHz) curves without accounting for quantum mechanical effects
•The thinnest EOT obtained thus far is 13.8 Å (physical thickness ~ 50 Å) with a leakage of less than 10⁻⁷ A/cm² at -1 V

Frequency Dispersion

•The ZrO₂ dielectric shows slight frequency dispersion which may be due to some interface charges or traps

Significant hysteresis believed to be due to charge trapping and detrapping ==>need for improved surface preparation, decreased contamination
Hysteresis is a function of bias sweep: higher max accumulation bias results in more charge injection

•Hysteresis has been seen to increase with NH₃ treated surfaces (UMN group)

CV Walkout

inte

14

Material Characterizations

Synchrotron Angle Resolved XPS of Thin ALCVD ZrO₂ Ekin ~ 215 eV FO 1s 15° 30° 45° 90° Vormalized Intensity [arb. units] Zr 3d Ekin~70 eV Zr-Si Zr,Si-₡ Si 2p Si-Si Ekin ~ 150 eV Si-O Binding Energy [eV]

Center for Integrated Systems Stanford University

Synchrotron XPS Differential Sputter Profile

Both XPS techiques show metallic Zr or Zr silicide at/near Si surface
Samples pushing limits of physical metrology

•AFM image of a 50Å physical thickness ZrO2 shows that the RMS roughness is approximately 2.0 Å

Center for Integrated Systems Stanford University

18

XTEM Analysis

- TEM image reveals that the 50 Å ZrO_2 film is polycrystalline and that there is a 15 Å interfacial layer between ZrO_2 and Si
 - since the interfacial layer thickness is greater than the EOT (13-14 Å), the interfacial layer is not pure SiO₂ and must have a moderate K value (either silicate or doped oxide)
 - no evidence of silicide layer or precipitates as suggested by XPS
- Fourier transform analysis of TEM micrograph confirms monoclinic crystal structure

XTEM Analysis XTEM Micrograph of 65Å ZrO2 Film

50 Å ZrO₂

15 Å

Silicate

Annealing Studies

N₂ and O₂ Annealing Results

- Gate stack is stable at up to 550 °C for 5 min N_2 RTA
 - Capacitance decreases at T > 550 °C
 - Jack Lee @ UT Austin has seen chemical shifts in Si XPS peaks in interfacial layer at $T > 550 \text{ }^{\circ}\text{C}$
 - Has been hypothesized that silicate/interfacial layer decomposes to SiO_2 and ZrO_2
- No significant changes in V_{FB} shift with 5 min O_2 RTA
 - As-deposited ZrO₂ shows good stoichiometry
 - Decrease in leakage and capacitance for T > 500 °C signifies further interfacial oxide growth
- Hg probe used to measure all blanket annealed samples
 - Good for relative comparisons only: underestimates leakage and capacitance and overestimates hysteresis due to contamination layer between Hg and ZrO₂ *Center for Integrated Systems Stanford University*

Hydrogen Annealing

•650°C, 60 sec anneal in H₂/Ar significantly improves CV "stretch out" (caused by elevated D_{it}), decreases hysteresis (caused by positive oxide charge) and V_{FB} (also caused by positive oxide charge)

• no significant changes seen in leakage or capacitance •NOTE: Hg probe overestimates ΔV_{FB}

Summary/Tech Transfer of ALD ZrO₂

- 13.8 Å EOT demonstrated with exceptional leakage of less than 10⁻⁷ A/cm²
- D_{it} looks noteworthy from CV curves (but still needs to be quantified)
- 650 °C, 60 sec hydrogen anneal is seen to significantly reduce hysteresis to an acceptable level (< 100 mV for 1 V to -3 V sweep)
- ALD process is suitable for manufacturing of 8 and 12 inch wafers (exceptional uniformity and repeatability)
- Insignificant frequency dispersion

Future Work

- Alternative surface preparations
 - nitridation, oxidation, wet cleaning
- Further electrical testing
 - SILC, D_{it} (quasistatic and/or Terman), constant current, reliability, temperature dependence
- Hysteresis and CV/IV walkout minimization
- Alternative electrodes
 - SiGe deposition in CIS

Future Work

- Improve pre-deposition surface preparation to minimize interfacial layer, defects and contaminants
- Grow thinner ZrO_2 films (20 40 Å)
- More microanalyses to determine origin of "silicide/metal" signature at Si surface
- Produce wafers with practical channel doping levels to determine acceptable V_T , fixed charge and hysteresis (a) $V_{DD} = 1 V$

Acknowledgements

- Dr. Marko Tuominen and Dr. Suvi Haukka of ASM Microchemistry for the ALD samples without whom this project and these results would not have been possible
- R. Ynzunza for beam time and help with the synchrotron XPS experiments

