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Desirable Advanced Gate Dielectric
Properties for Sub-0.1 µm MOSFET

Physical Properties
• K ~ 15 - 60
• Thermally stable next to Si
     (no barrier layer; annealing)
• High-quality interface with Si

Electrical Properties
• EOT < 15 Å
• J < 10-3 A/cm2 @ VDD

• Dit < 5 x 1010 cm-2 eV-1

• VFB, hysteresis < 50 mV
     (for +VDD to -VDD sweep)
• No C-V dispersion
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ALCVD Reaction Cycle
1) ZrCl4(g)

2) ZrCl4(ad)

3) ZrCl4(ad) + 2H2O (g) 
ZrO2 (ad) + 4HCl (g) 

4) ZrO2(ad)

•Self-limiting surface reaction steps with purge in between steps
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Characteristics Features of ALCVD
Characteristic Feature Inherent Implication on

Film Deposition
Practical Advantage

Self-limiting growth Thickness only dependent on
number of deposition cycles

Accurate and simple thickness
control

No need for reactant flux
homogeneity

Large area capability
Large batch capability
Excellent conformality
Good reproducibility

Separate dosing of reactants No gas phase reactions Favors precursors highly
reactive towards each other,
enabling effective material
utilization

Sufficient time is provided to
complete each reaction step

High quality materials are
obtained at low processing
temperatures
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Vast improvement in quality
of high-K replacement candidates

ZrO2 has consistently given the
most promising results:

Cox ~ 25 fF/mm2 and JL ~ 10-8 A/cm2

Improvement of High-K Candidates
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Electrical Measurements
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Gate Structure / Measurement Setup

p-Si (p+)

Silicate/SiO2 (~1.5 nm)
p-epi (2.75 um)

ZrO2 (~5 nm)

Al/TiN Electrode
(~200 nm)

 ±Vg

Test Structure Dielectric Deposition
ALD by ASM Microchemistry
Precursors : ZrCl4, H2O
Temperature : 300 oC
Test Conditions
C-V : HP 4284A
I-V : HP 4140B
Test temperature : 25 oC
Voltage step : 0.05 V
Delay Time : 1 sec
Cap Area = 7.225x10-5 cm2

Substrate Material
Minimize series resistance
p-epi (NA ~ 1x1016 cm-3)
p-sub (NA ~ 1x1019 cm-3)
700 oC NH3 RTN

Al backside contact
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Leakage vs. EOT Comparison Between
SiO2 and ZrO2 Dielectrics

•At the same EOT, ALD ZrO2 films show lower leakage current
than conventional SiO2 and RS ZrO2 films

•RS ZrO2 data from: Lee, J.C. etal, IEDM 1999, to be published
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J-V and C-V Characteristics of
13.8 Å EOT ZrO2 Dielectric

•EOT was calculated from the accumulation capacitance of HFCV (1 MHz)
           curves without accounting for quantum mechanical effects
•The thinnest EOT obtained thus far is 13.8 Å (physical thickness ~ 50 Å)
                           with a leakage of less than 10-7 A/cm2 at -1 V 
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Film Uniformity

•Exceptional uniformity across entire 8 inch
  wafer resulting in consistent and repeatable
  electrical characteristics

Die 1

Die 3

Die 2

Die 4
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Frequency Dispersion

•The ZrO2 dielectric shows slight frequency dispersion
which may be due to some interface charges or traps

0

5

10

15

20

25

30

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

1 kHz
3.16 kHz
10 kHz
31.6 kHz
100 kHz
316 kHz
1 M Hz

C
ap

ac
ita

nc
e 

(f
F/

um
2 )

Gate Bias (V)



13Center for Integrated SystemsCenter for Integrated Systems
Stanford UniversityStanford University

Hysteresis as a Function of Bias Sweep

•Significant hysteresis believed to be due to charge trapping and detrapping
      ==>need for improved surface preparation, decreased contamination
•Hysteresis is a function of bias sweep: higher max accumulation bias
                                     results in more charge injection
•Hysteresis has been seen to increase with NH3 treated surfaces (UMN group)
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Material Characterizations
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Synchrotron Angle Resolved XPS of
Thin ALCVD ZrO2
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Synchrotron XPS Differential Sputter
Profile

•Both XPS techiques
show metallic Zr or
Zr silicide at/near Si
surface
•Samples pushing
limits of physical
metrology



18Center for Integrated SystemsCenter for Integrated Systems
Stanford UniversityStanford University

AFM of As-Deposited ALCVD ZrO2

•AFM image of a 50Å physical thickness ZrO2 shows that the RMS
                        roughness is approximately 2.0 Å
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XTEM Analysis

• TEM image reveals that the 50 Å ZrO2 film is polycrystalline
and that there is a 15 Å interfacial layer between ZrO2 and Si
– since the interfacial layer thickness is greater than the

EOT (13-14 Å), the interfacial layer is not pure SiO2 and
must have a moderate K value (either silicate or doped
oxide)

– no evidence of silicide layer or precipitates as suggested
by XPS

• Fourier transform analysis of TEM micrograph confirms
monoclinic crystal structure
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XTEM Analysis

50 Å
ZrO2

15 Å
Silicate

XTEM Micrograph of 65Å ZrO2 Film
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Annealing Studies
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N2 and O2 Annealing Results
• Gate stack is stable at up to 550 oC for 5 min N2 RTA

– Capacitance decreases at T > 550 oC
– Jack Lee @ UT Austin has seen chemical shifts in Si

XPS peaks in interfacial layer at   T > 550 oC
– Has been hypothesized that silicate/interfacial layer

decomposes to SiO2 and ZrO2

• No significant changes in VFB shift with 5 min O2 RTA
– As-deposited ZrO2 shows good stoichiometry
– Decrease in leakage and capacitance for T > 500 oC

signifies further interfacial oxide growth
• Hg probe used to measure all blanket annealed samples

– Good for relative comparisons only: underestimates
leakage and capacitance and overestimates hysteresis
due to contamination layer between Hg and ZrO2
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Hydrogen Annealing
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Summary/Tech Transfer of ALD ZrO2

• 13.8 Å EOT demonstrated with exceptional leakage of less
than 10-7 A/cm2

• Dit looks noteworthy from CV curves (but still needs to be
quantified)

• 650 oC, 60 sec hydrogen anneal is seen to significantly
reduce hysteresis to an acceptable level (< 100 mV for 1 V
to -3 V sweep)

• ALD process is suitable for manufacturing of 8 and 12
inch wafers (exceptional uniformity and repeatability)

• Insignificant frequency dispersion
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Future Work
• Alternative surface preparations

– nitridation, oxidation, wet cleaning

• Further electrical testing
– SILC, Dit (quasistatic and/or Terman), constant current,

reliability, temperature dependence

• Hysteresis and CV/IV walkout minimization

• Alternative electrodes
– SiGe deposition in CIS
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Future Work
• Improve pre-deposition surface preparation to minimize

interfacial layer, defects and contaminants

• Grow thinner ZrO2 films (20 - 40 Å)

• More microanalyses to determine origin of “silicide/metal”
signature at Si surface

• Produce wafers with practical channel doping levels to
determine acceptable VT, fixed charge and hysteresis @
VDD = 1 V
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