Removal of Metals from Semiconductor Surfaces Using Dry Cleaning Methods

R. L. Opila

opila@lucent.com Bell Labs, Lucent Technologies 600 Mountain Avenue Murray Hill, NJ 07974 USA

SRC Benign Manufacturing

Lucent Technologies

Bell Labs Innovations

Motivation

- Gate dielectric thicknesses are approaching native oxide thickness—cluster tool!!!!
- Cluster tool
 - One wafer, dry clean
 - Rapid thermal oxidation (RTO) and annealing (RTA)
 - Poly Si deposition

Wet Cleans

SC-1 (standard clean 1) H₂O₂—hydrocarbon removal NH₄OH--particle removal, oxide etch SC-2 (standard clean 2) H_2O_2 —oxidize surface (metals and hydrocarbons) HCl—make soluble metals HF—hydrogen flouride HF—oxide etch

Wet clean mechanisms

- Hydrocarbons $C_xH_y + H_2O_2 \rightarrow CO_2 + H_2O$
- Oxide $SiO_2 + NH_4OH \rightarrow Si(OH)_4 + NH_3$ $SiO_2 + HF \rightarrow SiF_4 + H_2O$
- Metals

 $MO_x + HCl \rightarrow MCl_n + H_2O$

- Particles
 - Zeta potential

Dry Clean Mechanisms

- Hydrocarbons $C_xH_y + O_3 + h\nu \rightarrow CO_2 + H_2O$
- Oxide

 $SiO_2 + HF \rightarrow SiF_4 + H_2O$

• Metals

 $MO_x + Cl_2 + h\nu \rightarrow MCl_n + O_2$

• Particles????

Metal Chloride Boiling Points

KCl	subl 1500 C
CaCl ₂	>1600 C
TiCl ₄	136 C
VCl ₄	148 C
MnCl ₂	1190 C
FeCl ₂	d 315 C
CoCl ₂	1049 C
NiCl ₂	973 C
CuCl	1490 C
CuCl ₂	993 C
ZnCl ₂	732 C

Wafer Cleaning in IC Manufacturing

	Wet Clean	Dry Clean
Metals	H ₂ SO ₄ /H ₂ O ₂ /DI, HCl/H ₂ O ₂ /DI, DHF	Cl ₂ , HCl (UV, plasma)
Particles	NH ₄ OH/H ₂ O ₂ /DI	cryogenic aerosol, CO_2 snow
Organics	H ₂ SO ₄ /H ₂ O ₂ /DI, NH ₄ OH/H ₂ O ₂ /DI	O_3, O_2 (UV or plasma)
Native oxide	dHF, bHF	$AHF/H_2O(alcohol), H_2(UV, plasma)$
UPW usage	high	low
Chemical usage	high	low
Foot-print	large	small
Worker's risk	high	low

Key Issues in Dry Cleans

- Develop gas phase alternatives
- Characterize gas phase reactions
- Characterize surface kinetics
 - Surface cleanliness (TXRF, XPS)
 - Surface passivation (in situ XPS, FTIR)
 - Surface roughness (AFM, STM)
- Characterize electrical performance

Origins of Metal Contamination

• Sources: equipment, processes, materials, and human

• Transition metals precipitation on silicon surfaces is critical RLO 10/99

Can Dry Clean Compete with Wet Clean?

Timp, Sorsch, Sapjeta, Weir, Bell Labs, Lucent Technologies, MRS (1997)

- Concerns:
 - Metal contamination
 - Hydrocarbon contamination
 - Surface termination/chemical states
 - Surface roughness
- Impact on subsequent processes

UV Cleaning Process

- UV radiation initiates gas-phase reaction and surface reaction
- Remove metallic/organic contamination with UV/Cl₂
- In situ XPS analysis and ex situ TXRF analysis

In-situ XPS and UV Process System

• *In situ* quantification of transition metal concentrations with cleaning processes RLO 10/99

UV/Chlorine Processing

 $\begin{aligned} \text{Cl}_{2}(^{1}\Sigma_{g}^{+}) + h\nu &\to \text{Cl}_{2}(^{3}\Pi_{o^{+}u}) \to \text{Cl}(^{2}\text{P}_{3/2}) + \text{Cl}(^{2}\text{P}_{1/2}) \\ &\searrow \qquad \text{Cl}_{2}(^{3}\Pi_{1u}) \to 2 \text{ Cl}(^{2}\text{P}_{3/2}) \end{aligned}$

• Broad band radiation vs. monochromatic radiation

Sample Preparation

• Contamination of Choice: Cu

Counts

- Silicon samples contaminated in 1000µg/ml copper atomic absorption standard solution (matrix: 5% HNO₃)
- Surface contamination (10¹³-10¹⁴/cm²) calibrated with Synchrotron-TXRF analyzed standards

RLO 10/99• No surface roughening observed after metal contamination (~1A)

Copper Removal at High Temperatures

- Cl₂ pressure: 100 mtorr, UV exposure time: 10 min
- CuCl₂ formed after UV/Cl₂ exposure
- Complete copper removal at above 100°C

Effect of Chlorine Pressure

Pressure (mTorr)

- Copper removal efficiency is inversely proportional to the Cl₂ pressure at room temperature
- Copper removal efficiency depends less on the Cl₂ pressure at higher temperatures

Copper Removal Mechanism

- UV enables the production of atomic chlorine (350-375nm) and enhances the formation of non-volatile $CuCl_2$
- UV enables chemical reduction of metal chlorides (235-245nm) and allows metal removal at relatively low temperatures
- Thesis (Lawing, MIT), Patent (Lawing, Chang, Sawin and FSI)

Effect of UV Exposure

• Copper removal efficiency increases with UV intensity and exposure time

Monochromatic UV Radiation

 $\begin{aligned} \mathrm{Cl}_{2}(^{1}\Sigma_{\mathrm{g}^{+}}) + h\nu &\rightarrow \mathrm{Cl}_{2} (^{3}\Pi_{\mathrm{o}^{+}\mathrm{u}}) \rightarrow \mathrm{Cl}(^{2}\mathrm{P}_{3/2}) + \mathrm{Cl}(^{2}\mathrm{P}_{1/2}) \\ \searrow \qquad \mathrm{Cl}_{2} (^{3}\Pi_{1\mathrm{u}}) \rightarrow 2 \ \mathrm{Cl}(^{2}\mathrm{P}_{3/2}) \end{aligned}$

RLO 10/99 • Monochromatic radiation (low UV intensity) at 330nm and 240nm

- CuCl₂ formed after UV/Cl₂ exposure
- Monochromatic UV achieved limited Cu removal
- Much longer process time (~ 3 hours) due to low UV intensity

Synchrotron Total Reflection X-ray Fluorescence

- Detection limit for transition metals ~ 3×10^8 atoms/cm²
- Cu removal efficiency increases with temperature **©**UMPPmoval efficiency depends less on pressure at higher temperature

Conclusion

- UV enhanced the formation of volatile copper chlorides and their subsequent removal
- Metal removal efficiency depends strongly on substrate temperature, moderately on pressure and UV exposure
- Surface roughening is observed after high temperature UV/Cl₂ processing
- SR-TXRF offers leading edge analytical capability with greatly improved detection limits
- Utilized temperature programmed desorption technique to determine the identity of UV/Cl₂ induced volatile surface species
- Investigate removal efficiency of other metals (Fe, Ni, Ca, ...)

Acknowledgments

- J. P. Chang, UCLA
- J. M. Rosamilia
- J. Eng
- P.Pianetta, Stanford
- M. Green
- J. Sapjeta

