

CVD low k Solutions for sub-0.18um Technology

Hichem M'Saad, Ph.D. Strategic Marketing Manager Dielectric Systems and Modules Applied Materials, Inc. Santa Clara, CA

ERC THRUST D TeleSeminar March 2nd, 2000

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

OUTLINE

Introduction:

- Materials World.
- Low k Roadmap.

Inorganic Low K Materials

- FSG
- Black Diamond

Barrier/Etch Stop Materials

- Copper Surface Treatment.
- BLOk.

CVD Remote Clean Technology Summary

IC Manufacture/Equipment Industry Interaction

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

Source: Texas Instruments/Applied Materials

Driving Moore's Law

- Historically
 - 90% Dimensional Improvements, 10% Material Changes
 - Dimensional: Lithography and Etch
 - Materials: PSG-BPSG, PVD CVD W, WSi_x-TiSi-CoSi
- Now
 - 50% Dimensional Improvements, 50% Material Changes
 - Dimensional: Lithography, Etch, Integration (T-Gate, Damascene)
 - Materials: TaO, BST, Low K Dielectric, Copper
- Future Beyond 0.1um Trend Will Continue
 - 30% Dimensional Improvements, 70% Material Changes

More Emphasis on Performance due to Materials, in addition to the traditional Focus on Lithography

LOW κ SIA ROADMAP

- Dielectric constant range in Y2000 is 2.5-3.6, but expected to drop to <2.5 by 2002
- Expect another revision

HISTORY OF INDUSTRY LOW κ DEVELOPMENT

- The need for Cu/Low κ first introduced in 1994 NTRS
- First screening period (1995-1997) focused on k and thermal stability, since most initial candidates were organic SOD. Evaluation only involved 1 or 2 level metal damascene builds.
- Industry began to shift focus in 1998 to multi-level damascene integration compatibility. Thermal-mechanical properties become key criteria, which exposed deficiencies in many organic materials.
- Serious CVD options entered market in 1999 and continue to rapidly gained DTOR status. The majority of customers now looking at CVD carbon doped oxide as first viable k<3.0 product.

RECENT INTERCONNECT CONFERENCE SUMMARY

Advanced Semiconductor Manufacturing Conference, Sept 99 in Boston, MA

• Documentation by Dataquest specifically revising their prediction 2 years ago of first generation κ <3.0 materials being SOD to CVD C-Doped Oxide materials.

Advanced Metallization Conference, Sept 99 in Orlando, FL

- First generation low κ material will be FSG.
- Conference papers shows promising result of CVD Low κ , Carbon Doped Oxide.
- Key consensus from Panel Discussion:
 - CVD Low κ provides better reliability than SOD.
 - Toughness, mechanical strength and adhesion of Low κ are keys to success

<0.15µm Interconnect Materials Workshop, Nov 99 in Monterey, CA

- Oxide type of Low k materials is the most promising.
- Thermal-mechanical properties are the most crucial criteria for selection.

LOW κ MATERIALS FOR ADVANCED INTERCONNECTS

Inorganic CVD Low k:

Proven CVD deposition technology

Oxide-like properties for ease of integration

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

Hardness Measurement of Different Low K Materials (Nano Indentation Method)

ULTIMA HDP-CVDTM FSG Bulk Film Comparison vs. HSQ

- High thermal conductivity critical for heat dissipation
 - FSG provides equivalent thermal properties to conventional oxides
 - >3x thermal conductivity of Low κ spin-on dielectrics

- High hardness critical for electromigration resistance, mechanical stability during CMP
 - FSG provides equivalent hardness to conventional oxides
 - >20x hardness of Low κ SODs

Oxide-Like Bulk Film Properties Contribute to Integration Ease, Device Reliability

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

ULTIMA HDP-CVDTM

FSG and HSQ Dielectric Constant Comparison

FSG $\kappa_{eff} \leq$ HSQ κ_{eff} For Narrow Gaps

Below 0.24µm spacing, FSG κ_{eff} is lower than HSQ due to impact of USG liner on effective κ

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

TDS Profile for κ = 3.45 HDP-FSG film

No desorption of any species at temperatures lower than 500°C.

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

F Stability for different Processes

SIMS of F outdiffusion.

HDP-FSG is more stable than PE SiH₄ FSG.

Annealed at 410°C for 6 cycles in an N₂ ambient with 30 minutes each cycle.

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

DIELECTRIC FILM REQUIREMENTS FOR DUAL DAMASCENE INTEGRATION

Films must be compatible with: Etch, CMP, Photolithography,Metallization modules

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

BLACK DIAMOND[™] LOW κ FILM (κ = 2.6-3.0)

Simple Process Chemistry:

- Single wafer CVD reaction to form carbon doped oxide network
- Non-specialty chemicals as pre-cursors

Film Properties:

• Thermal and mechanical properties similar to silicon oxide

Integration:

- Silicon oxide like film properties simplify integration
- Compatible with copper/oxide damascene tool set

Black Diamond Film Composition (FTIR)

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

Intensity

Black Diamond Thermal Mechanical Properties Comparison

	Black Diamond	SiO ₂	HSQ	Porous SiO ₂	>20 at.% SiOC	Organic Polymer
Hardness (GPa)	1-3	7-8			0.4	0.1-0.3
CTE in plane (ppm/C)	5-15	~1.0	20	50-70	40-50	50-70
Biaxial E (Gpa)	10-15	70-80	5-10	2-3	5-7	2-3
Ther. Cond. (W/mC)	0.3-0.4	~1.0		0.05-0.07	<0.2	<0.1

Black Diamond has the most similar thermal mechanical properties to SiO₂ for κ < 3.0 materials

Issues for Organic and High C Content SiOC Films

Narrow process window for damascene etch

- Low etch rate and selectivity to SiN and photoresist

Poor ashing resistance

- Difficult sidewall polymer removal
- Significant via sidewall pullback

• Possible leakage due to silicon carbide or dangling Si bonds

Poor thermal, mechanical properties

- Low hardness results in poor damascene structural integrity, incompatibility to CMP (peeling, scratches, etc.), Cu protrusions
- High CTE and Low Young's Modulus affected via integrity
- Low thermal conductivity causes excess Joule heating, resulting in poor EM lifetime and Cu protrusions

REACTIVE PLASMA COPPER OXIDE REMOVAL

APPLIED MATERIALS*

- (1) Plasma generates atomic hydrogen
- (2) Hydrogen reacts with CuO to form $H_2O / OH + Cu$
- (3) Cu rebonds to form high quality large grain structure
- (4) H_2O is pumped out

Published Papers:

- (1) The reduction of copper oxide thin films with hydrogen plasma, Yasushi Sawada, et al., J. Phys. D:Appl. Phys. 29 (1996) 2539-2544.
- (2) Surface cleaning of copper by thermal and plasma treatment... S. Hymes, et al., J. Vac. Sci. Technol. B 16(3), May/Jun 1998

Cu DAMASCENE INTEGRATION

In Situ Plasma Treatment for Copper Oxide Removal

In Situ Plasma Treatment Required for Good Cu/Barrier Adhesion

- * Failed at epoxy/dielectric interface
- ** AMAT Electra Cu & Mirra Cu CMP + 500Å Barrier
- ** 10-30 sec. treatment
- ** BLOk Patent Pending

BLOKTM: Barrier Low κ

Why is a low κ barrier/etch stop necessary?

- Low κ dielectric materials are required to reduce RC time delay in <0.25 micron metal interconnects.
- Low κ barrier/etch stop has a *significant impact* on the effective κ value of the damascene structure.
- The current barrier/etch stop candidate is SiN which has a $\kappa > 7$.
- Applied Materials has developed a barrier/ etch stop candidate with κ < 5.0 (Barrier LOw κ).

BARRIER IMPACT ON EFFECTIVE DIELECTRIC CONSTANT

Effective Dielectric Constant

	ILD K Value		
Barrier Ƙ Value	USG	FSG	BD
	К= 4.0	K= 3.5	К= 2.7
1,000Å SiN (K = 7.2)	4.8	4.4	4.0
1,000Å BLOk (K = 5.0)	4.5	4.0	3.2
500Å BLOk (K = 5.0)	4.2	3.7	3.0

Use of BLOK Can Significantly Reduce Effective κ Value

* Data obtained using Raphael[™] simulation

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

PFCs and Global Warming Potential

Gas	Lifetime (yrs.)	GWP (100yrs. ITH)	GWP (infinite ITH)
CO ₂	50-100	1	1
CF ₄	50,000	6,500	850,000
C ₂ F ₆	10,000	9,200	230,000
SF ₆	3,200	23,900	230,000
C ₃ F ₈	7,000	7,000	130,000
NF ₃	740	8,000	18,000
CHF ₃	250	11,700	11,000

- Global warming gases are causative agents*
- "The world's changing climatic conditions are more than the natural variability of weather."⁺
- PFC gases have long lifetime and high global warming potential (GWP)
- 70 to 90% of PFC emissions from a semiconductor fab. are attributed to CVD chambers cleaning.
- The Semiconductor industry has taken a voluntary approach to reduce emissions.
 - * Gribbin, The end of the ice ages? New Scientist, 1989.
 - Conclusions of the IPCC (Intergovernmental Panel on Climate Change) First Conference of the Parties, Framework Convention on Climate Change. Berlin, 1995.

- In situ Clean
 - Results in corrosion of chamber components at high power density.
 - Limited etch rate, longer clean time.
 - Limited PFC Utilization Removal Efficiency (URE = 20-70%)

- Remote Clean™
 - Near complete Utilization Removal Efficiency of NF₃ (URE = 99%)
 - High etch rate (20-60% reduction of clean time)
 - No ion bombardment in main chamber("soft" clean)
 - Increased Mean Wafer Between Clean (3000 --> 5000 wafers)
 - Global Warming emissions reduced by one to two order of magnitude (Carbon equivalent).

Results

GWP Equivalent Kg CO₂ Per Micron of TEOS Oxide Film

Awards

- The EPA honored Applied Materials with the 1999 Climate Protection Award for its Remote Clean™
- The Remote Clean™ received the prestigious R&D 100 Award
 - sponsored by R&D Magazine
- Applied Materials Taiwan received the National Business Environmental Protection Award given by Taiwanese government.

Summary

Technology Generation/Time

DIELECTRIC DEPOSITION SYSTEMS & MODULE PRODUCT GROUP

Scaled RC (Device Speed)