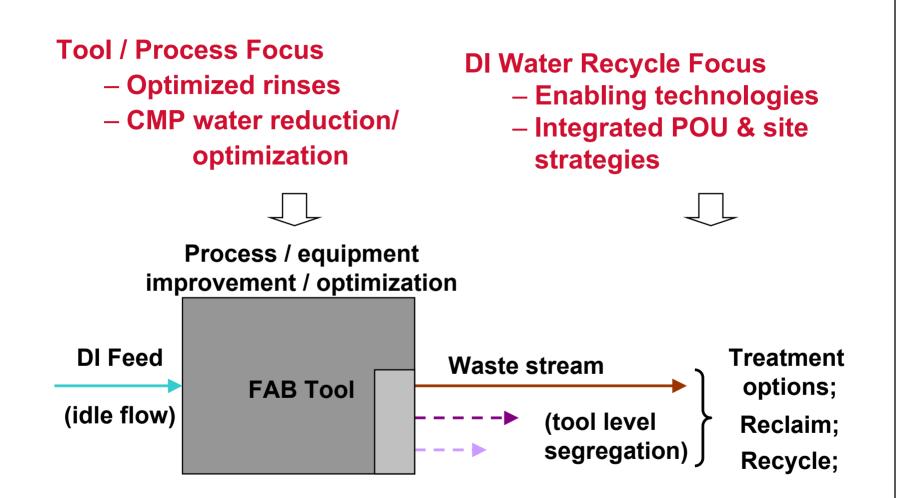


CMP Water Use Optimization: International SEMATECH Project Perspective

P. Jerry Chen Project Manager 512-356-7630 jerry.chen@sematech.org

Main source of DI water use in Member Company fabs: Wet cleans and CMP


Increased use by CMP in manufacturing: FEOL: Oxide (STI, PMD), poly (DRAM), BEOL: Oxide, W, Cu

Drivers for optimized water use:

- Water availability
- Cost of city water and discharge
- Expansion vs. DI plant capacity
- Need to treat CMP effluent before discharge

Water Use Optimization: Project Strategies

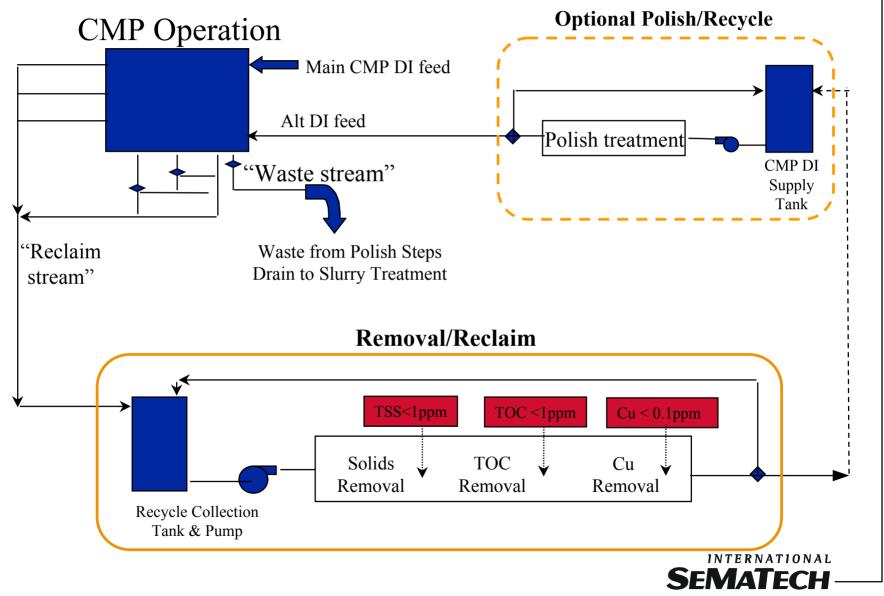
CMP Water Use Optimization: 2000

Project Objectives

- Reduce/optimize water use in CMP/post CMP cleans
 - reduce NET water use in CMP operation
 - match quality of water with operation
 - no negative impact in CMP process performance
- Ensure continuity in technology transfer from 200mm to 300mm wet tools
- Promote the enabling technologies for risk free rinse/CMP water recycle & reuse

CMP Water Use Optimization: Tool Level Focus

- Benchmarking: CMP tool water usage
 - Member Company/Supplier participation
 - data from manufacturing fabs
 - individual tool characteristics
- Programmed flow rates:
 - no-process ("idle")
 - pad conditioning ("buffing")
 - polish
 - standardized/recommended flow rates
- Optimized hydrodynamic design in hardware


CMP Water Use Optimization: 2000

CMP Water Quality Requirements

- Tool Supplier specs/data: 18 ohm (?)
- Member Company experience:
 - CMP performance vs DI water quality
 - conductivity measurement at the tool/POU
 - dedicated CMP DI water supply loop
 - practice of local reuse/reclaim
- Collaboration with SRC/NSF ERC:

Supplier Concept of an Integrated CMP Water Use Reduction Strategy

8/30/00 16:22 q:\955\eshd007\ptab\wg2-00\prereadwg2-00.ppt - 7

1999 ITRS: Water Use

ESH Table 72a Resource Conservation Technology Requirements - Near Term

FACTORY INTEGRATION YEAR	1999	2000	2001	2002	2003	2004	2005
TECHNOLOGY NODE	180 nm			130 nm			100 nm
Decrease net feed water use	7.6	7.6	5.9	5.9	3.5	3.5	2.9
Liters/cm ² (gal/ in ²)	(13)	(13)	(10)	(10)	(6)	(6)	(5)
Decrease UPW use	6.0 - 8.0			5.0 - 7.0			4.0 - 6.0
Liters/cm ² (gal/ in ²)	(10.2 - 13.6)			(8.5 - 11.9)			(6.8 - 10.2)

ESH Table 72b Resource Conservation Technology Requirements - Long Term

YEAR	2008	2011	2014
TECHNOLOGY NODE	70 nm	50 nm	35 nm
Decrease net feed water use	1.2	1.2	1.2
Liters/cm ² (gal/in ²)	(2)	(2)	▼ (2)
Decrease UPW use	3.0 - 5.0	3.0 - 5.0	3.0 - 5.0
Liters/ cm ² (gal/ in ²)	(5.1 - 8.5)	(5.1 - 8.5)	(5.1 - 8.5)

