

Fundamental Beam Studies of Radical Enhanced Atomic Layer CVD (REALCVD)

Frank Greer, David Fraser, John Coburn, David Graves UC Berkeley March 9, 2000

Outline

- Discussion of Deposition Issues
- Description of REALCVD
- Description of Previous Work
- Description of Beam System
- Discussion of Proposed Experimental Procedure

New Materials Challenges

- High k materials
 - Potential replacement for SiO_2 as a gate dielectric
 - Capacitors in devices
- Diffusion barriers
 - Conductive
 - Thin
 - Pinhole free
 - Conformal in high aspect ratio features

Challenge: Develop materials and design processes while satisfying ESH objectives

Conventional Thermal CVD

- Use volatile organometallic precursor
- Heated wafer surface
 catalyzes precursor
 Wafer
 decomposition
- Products are oxide film and volatile compounds

 $OM-Zr_{(g)} + O_{2(g)} \rightarrow$ $ZrO_{2(s)} + CH_{4(g)} + CO_{2(g)} + H_{2(g)}$

Atomic Layer Epitaxy (ALE)¹

- Use volatile halide precursor and H₂O
- Reactants introduced in separate steps to achieve atomic layer control
- Heated wafer surface catalyzes precursor decomposition
- Products are oxide film and volatile halide compounds

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing ¹S. George, et al. 1990-

Radical Enhanced Atomic Layer CVD (REAL CVD)²

- Use volatile organometallic precursor and a radical source
- Reactants introduced in separate steps to achieve atomic layer control
- Radical flux catalyzes precursor decomposition
- Products are oxide film and volatile organic compounds

Step 1: OM-Zr (g) Step 2: OM-Zr (ab) $+ 2O^{*}(g) \rightarrow$ ZrO_{2 (s)} $+ CO_{(g)} + CO_{2(g)} + H_2O_{(g)}$ Showerhead

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

²A. Sherman 1999.

Potential Advantages of REALCVD over CVD and ALE

REALCVD vs. CVD

- Atomic Layer Control
 - Conformal step coverage
 - Wafer scale uniformity
- No gas phase nucleation
- Lower processing temperatures

REALCVD vs. ALE

- Lower processing
 - temperatures
- Wider range of processing conditions
- Wider range of materials

• Little fundamental data exist to validate these statements

• Deuterium used to avoid confusion with Ar^{2+} (m/c ratio = 20) signal in QMS

Etch Yield Results for Olin i-line Resist

Get Effect of Large Hydrogen Fluxes During Etching

1. Expose virgin PR to F atoms

2. Pump out fluorine from system

4. Pump out deuterium from system

- 5. Expose PR to F atoms (Measure DF, Δ mass)
- 3. Expose PR to D atoms (Measure DF, Δ mass) 6. Return to step 2

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Schematic of the Beam Apparatus in Cross-section

Cal

REALCVD Issues

- Precursor Choice
 - Reactivity
 - Toxicity
- Precursor Delivery
 - Source temperature
 - Delivery method
- Film Characterization
 - Composition
 - Interface structure/composition
 - Electrical properties
- ESH Concerns

Precursor Issues

- Want both oxides and nitrides from same precursor
 - Oxygen in precursor may lead to oxynitrides
- Want liquid precursor
 - Solid precursors difficult to heat and somewhat incompatible with vacuum
- Want low toxicity and non-corrosive precursor

Tetrakis(diethylamides)

- Organometallic
 Precursor
- Potential candidate for deposition of oxides and nitrides
- Non-toxic
- Non-corrosive

Precursor Delivery

Issues: 1). Flux characterization2). Supersonic Expansion3). Throttling

Experimental Plan

- Use Si QCM's to perform 25°C-100°C REALCVD of oxides
- Oxides may be simpler due to possible film reaction with trace oxygen background
- Move to higher surface temperatures later Requires:
 - new sample holder
 - Inductive or resistive heating of Si

Experimental Plan

- Quartz Crystal Microbalance (QCM) Studies:
 - Uptake rate (molecules/sec/L of source gas)
 - Number of monolayers (amu/dose) ads. vs. temperature
 - Number of monolayers deposited per dose vs. temperature (amu remaining/dose)

Experimental Plan

- Quadrupole Mass Spectrometer (QMS) Studies:
 - Reaction rate and product distributions
 - Temperature Programmed Desorption (TPD)

Long Range Plans

- REALCVD of high-k dielectrics
- Deposit on Pt or (Ni or Pt)/Si films
- Characterize film dielectric properties

Long Range Plans

- REALCVD of Nitrides for barrier applications
- Test for conformality and conductivity

ESH Evaluation of REALCVD

- Comparison of REALCVD Precursors
 - Performance
 - Toxicity
 - Efficiency
 - Energy usage
 - Materials consumption
 - Consumables required
- Comparison of Processes
 - Thermal CVD
 - ALE
 - Reactive Sputtering

Acknowledgments

- NSF-SRC ERC for Environmentally Benign Semiconductor Manufacturing
- Stanford
 - K.Saraswat, J.McVittie, P.McIntire
- Art Sherman
- Roy Gorden (Harvard)
- Schumacher
 - A. Lagendijk, Y.Senzaki
- Jim Fair (Novellus)
- SEMATECH Strategic Diagnostics for Plasma Processing
- UC SMART
- Equipment
 - Lam Research Corporation, IBM