Theoretical Approach to Understanding Gas Phase Reactions in Hot Filament Chemical Vapor Deposition of Low ? Fluorocarbon Films

Kenneth K. S. Lau and Karen K. Gleason

Department of Chemical Engineering Massachusetts Institute of Technology

Background on direct patterning of low ? FC films

Molecular design of low ? FC film architecture

Hot filament CVD of low? FC films

Density functional theory methodology

CF₂ gas phase thermochemistry

Summary

Approach

Progress in Patterning of HFCVD FC Films

Quantum Calculations Experiment 10/50 HFPO 10/400 HFPO HFPO Bulk Pulsed PECVD Pulsed PECVD **HFCVD** PTFF ************* -100 -200 0 -100 -200 0 -100 -200 0 -100 0 -200

Reduce precursor fragmentation and breakdown

Higher CF₂ concentration and more CF₂ polymerization

More PTFE-like composition and structure

Hot Filament Chemical Vapor Deposition

HFCVD Fluorocarbon Films

Recombination $CF_2 + CF_2 \longrightarrow CF_2=CF_2$

Propagation	$CF_2 + CF_2$	\longrightarrow	$CF_2 - CF_2$
	$CF_2 + CF_2 - CF_2$	\longrightarrow	$CF_2 - CF_2 - CF_2$
	$CF_2 + CF_2 - CF_2 - CF_2$	\rightarrow	$CF_2 - CF_2 - CF_2 - CF_2$
	$CF_2 + CF_2$	\longrightarrow	CF ₂ -CF ₂
	$CF_2 + CF_2 = CF_2$	\rightarrow	CF ₂ -CF ₂ -CF ₂
	$CE_{+} + CE_{-}CE_{-}CE_{-}CE_{-}$		CF ₂ -CF ₂ -CF ₂ -CF ₂

DFT Study: Optimized Geometries

CF₂ (singlet)

 $CF_2 = CF - CF_3$

• CF_2 - CF_2 - CF_2 •

 $c-C_3F_6$

optimized at B3LYP/6-31G(d) level

DFT Study: Heat of Formation

Total energies, zero point energies, enthalpic corrections and enthalpies of formation from B3LYP DFT.

$C_x F_y O_z$	Ee	ZPE	ΔH_{corr}^0	ΔH ⁰ _f (298 K)	ΔH ⁰ _f (298 K)	Δ
species				theory	expt	theory-expt
	(hartrees)	(hartrees)	(hartrees)	(kcal/mol)	(kcal/mol)	(kcal/mol)
³ C	-37.857 47	0.000 00	0.002 36			
² F	-99.761 68	0.000 00	0.002 36			
³ O	-75.090 87	0.000 00	0.002 36			
F ₂	-199.581 02	0.002 43	0.003 34	2.2	0.0	2.22
¹ CF ₂	-237.790 29	0.006 95	0.003 96	-45.7	-43.5	-2.20
³ CF ₂	-237.706 59	0.006 79	0.004 05	6.8		
$CF_2 = CF_2$	-475.697 41	0.021 48	0.006 37	-161.1	-157.4	-3.71
$CF_3CF=CF_2$	-713.593 08	0.034 27	0.009 11	-270.2	-269.0	-1.19
CF ₂ -CF ₂	-475.619 25	0.019 62	0.006 66	-113.0		
$CF_2 - CF_2 - CF_2$	-713.492 44	0.031 98	0.009 59	-208.1		
$CF_2 \text{-} CF_2 \text{-} CF_2 \text{-} CF_2$	-951.363 26	0.044 37	0.012 41	-301.8		
CF ₃ CFO	-551.011 63	0.026 32	0.007 18	-239.9		
CF ₃ CF(O)CF ₂ / HFPO	-788.843 36	0.038 94	0.009 52	-309.2		

Heats of formation derived following approach by Curtiss et al, J. Chem. Phys., 95, 2433 (1991).

 $|\Delta|_{av} = 2.33$

Initiation
$$CF_3 - CF - CF_2 \xrightarrow{\Delta} CF_2 + CF_3 - CF_1 \\ O (singlet) O \\ O O \\$$

Recombination $CF_2 + CF_2 \longrightarrow CF_2 = CF_2$

Propagation	$CF_2 + CF_2$	\longrightarrow	$CF_2 - CF_2$
	$CF_2 + CF_2 - CF_2$	\rightarrow	CF ₂ -CF ₂ -CF ₂
	$CF_2 + CF_2 - CF_2 - CF_2$		$CF_2 - CF_2 - CF_2 - CF_2$
	$CF_2 + CF_2$	\longrightarrow	CF ₂ -CF ₂
	$CF_2 + CF_2 = CF_2$	\longrightarrow	CF ₂ -CF ₂ -CF ₂
	$CF_2 + CF_3 - CF = CF_2$		CF ₂ -CF ₂ -CF ₂ -CF ₂

DFT Study: CF₂ Thermochemistry

Enthalpies of reactions from the B3LYP DFT method for a set of gas phase CF2 reactions from HFPO pyrolysis.

C _x F _y O _z	ΔH ⁰ _{rxn} (298 K)	ΔH_{rxn}^0 (298 K)	Δ
reaction	theory	expt	theory-expt
	(kcal/mol)	(kcal/mol)	(kcal/mol)
$HFPO \ \rightarrow \ CF_2 \ + \ CF_3CFO$	23.6		
$CF_2{=}CF_2 \ \rightarrow \ CF_2 \ + \ CF_2$	69.7	68.4	1.32
$CF_2 \ + \ CF_2 \ \rightarrow \ CF_2\text{-}CF_2$	-21.6		
$CF_2 \ + \ CF_2 - CF_2 \ \rightarrow \ CF_2 - CF_2$	-49.4		
$CF_2 \ + \ CF_2 - CF_2 - CF_2 \rightarrow \ CF_2 - CF_2 - CF_2 - CF_2$	-48.0		
$CF_2 \ + \ CF_2 \ \rightarrow \ CF_2\text{-}CF_2$	-21.6		
$CF_2 \ + \ CF_2 = CF_2 \ \rightarrow \ CF_2 - CF_2 - CF_2$	-1.3		
$CF_2 \ + \ CF_3 \text{-} CF \text{=} CF_2 \ \rightarrow \ CF_2 \text{-} CF_2 \text{-} CF_2 \text{-} CF_2$	14.1		
$CF_2 ({}^{3}B_1) \rightarrow CF_2 ({}^{1}A_1)$	-52.5	-54.0	1.52
		$ \Delta _{av} =$	1.42

DFT Study: CF₂ Propagation/Depropagation

 $CF_2 + (CF_2)_{n-1} (CF_2)_n$? $H^0_{rxn} = -48.7 \text{ kcal/mol}$

 $nC + nF_{2} (CF_{2})_{n}$? $H_{f,n}^{0} = 75.5 - 94.4n \quad n=2,3,...$ $(CF_{2})_{n+m} (CF_{2})_{n} + (CF_{2})_{m}$

? $H_{rxn}^0 = +75.5 \text{ kcal/mol}$

Molecular design of low ? FC films

HFCVD reactions and reactive species

CF₂ thermochemistry

Potential CF₂ polymerization pathway