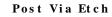
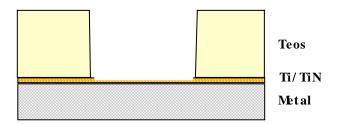
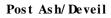
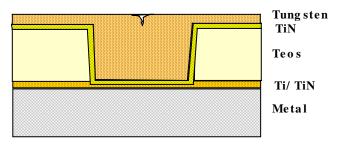

# Manufacturing Qualification of an All Dry De-veil Plasma Process


Lisa Mikus Doug Dopp Amanda Horn Richard Bersin, Presenter\* Han Xu\* Mohamed Boumerzoug\*


\* ULVAC Technologies, Inc





#### Via Process Integration







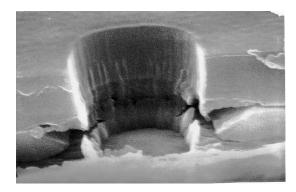


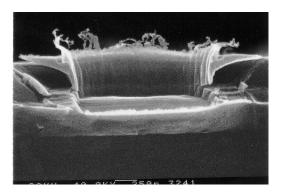


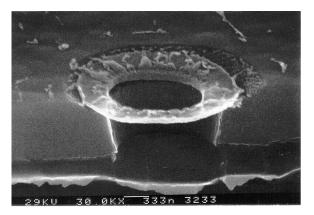
Via Metal Fill



Mikus, et. Al. 051500


Page 2


#### Problem Statement

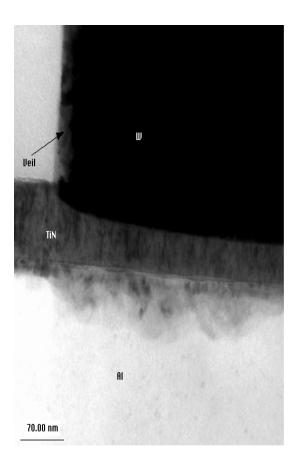

• Via veil, or metallized polymer, is an unwanted by-product of via etch. Traditionally, these veils are removed with organic or inorganic solvents. Inorganic solvents, while effectively dissolving veils under ideal conditions, are costly and inconsistent under non-ideal conditions. Solvents are also environmentally incompatible. For these reasons, a dry solution has been explored.



#### The Problem: Via Veils



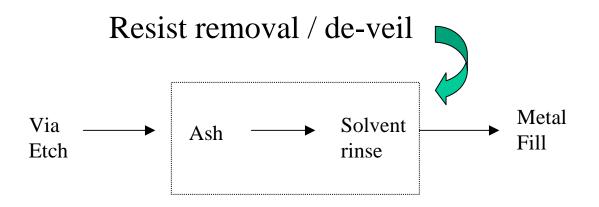





\* veils produced using stop-on-Al via test structures



Mikus, et. Al. 051500


#### Via Veil: Stop-on-TiN Via



\* ash only processing no de-veil.



#### Solvent De-veil Process



1.  $O_2/N_2$  ash to remove resist. >240 °C process temp

2. Hydroxyl amine (HA) solvent de-veil done in hood or spray tool.

Spray Process: HA (80 °C) rinse followed by isopropyl alcohol and DI water rinse.



#### Solvent De-veil Process, cont'd

- HA chemical effectiveness dependent on temperature and water concentration.
- Spray tools are difficult to control and to monitor. Hoods require large floor space.
- Aggressive nature of HA tends to pit AlCu and degrade valves and seals.
- Chemicals, chemical facilities, and chemical management are costly and relatively unfriendly to the environment.



These difficulties lead to product variation, scrap, high cost and environmental burden.



#### Solvent Spray Tool



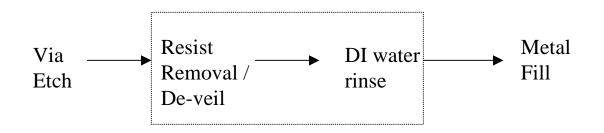


#### Solvent Handling Facilities



#### \* 5700 gal chemical reclaim tanks




Mikus, et. Al. 051500

# Dry De-Veil Theory

• The addition of free fluorine to the  $O_2/N_2$  Ash chemistry at reduced temperature will make the veil more soluble, thus more readily removed with DI water only. This is based on the fact that  $Al_2F_3$  is more soluble than  $Al_2O_3$ .



#### Dry De-Veil Process



1. Resist removal and veil treatment using NF<sub>3</sub>/O<sub>2</sub> plasma process at 25-90 <sup>o</sup>C.

2. Room temperature DI water rinse.



## Dry De-Veil Process, cont'd

- Dual process steps: bulk resist removal and veil treatment
- Chemistry:  $NF_3$  or  $CF_4$ ,  $O_2$ ,  $N_2$  or  $H_2N_2$  (forming gas, 2%  $H_2$ )
- Dual power sources:
  - Downstream microwave: 0-2000W
  - RF for reactive ion etch: 0-650W
- Low temperature processing: 25-90 °C
- Optical Endpoint



## Dry De-Veil Results

- Product yield and resistance data is equivalent or better than solvent process
- Metal fill glue deposition is more uniform
- Solvent failure mechanisms have been eliminated.
- Product has been running with the new process since Q4'99.





#### Dry De-Veil Process Tools



\* Dry de-veil tools and DI water Spin/Rinse/Dry tool



#### De-veil Cost Comparison:

Assume: 10K wafer starts/wk, Triple layer metal (2 via layers)

| Cost Item      | Solvent Process           | Dry De-veil Process       |  |  |
|----------------|---------------------------|---------------------------|--|--|
| HA Solvent     | \$2,080,728 (41,614       |                           |  |  |
| Cost           | gallons)                  | \$0                       |  |  |
| Isopropyl      | \$2,741,566 (312,109      |                           |  |  |
| alcohol        | gallons)                  | \$0                       |  |  |
| DI Water       | \$4,498 (391,134 gallons) | \$3,632 (315,900 gallons) |  |  |
| Process gas    | \$8,786                   | \$98,758                  |  |  |
| Process power  | \$969 (11,847 KWH)        | \$765 (9,359 KWH)         |  |  |
| Waste disposal | \$17,153                  | \$0                       |  |  |
| TOTAL          |                           |                           |  |  |
| PROCESS        |                           |                           |  |  |
| COST           | \$4,853,700               | \$103,155                 |  |  |
| TOTAL          |                           |                           |  |  |
| PROCESS        |                           |                           |  |  |
| COST/WAFER     |                           |                           |  |  |
| PASS           | \$4.66                    | \$0.10                    |  |  |
| TOTAL          |                           |                           |  |  |
| PROCESS        |                           |                           |  |  |
| COST/WAFER     | \$9.33                    | \$0.20                    |  |  |



### Cost Comparison, cont'd

|                    | Solvent Process       | Dry De-veil Process |  |  |
|--------------------|-----------------------|---------------------|--|--|
|                    | 5 Spray Solvent Tools | 7 Dry De-veil Tools |  |  |
| Equipment list     | 4 Dry Ashers          | 2 Spin Rinse Dryers |  |  |
| Annual             |                       |                     |  |  |
| amortization       |                       |                     |  |  |
| 5 yr. depreciation | \$860,664             | \$802,800           |  |  |
| Idling power costs | \$10,000              | \$15,085            |  |  |
| Annual             |                       |                     |  |  |
| component          |                       |                     |  |  |
| replacements       | \$400,000             | \$91,000            |  |  |
| Tool set floor     |                       |                     |  |  |
| space requirement  | 243 sq ft             | 117 sq ft           |  |  |
| TOTAL              |                       |                     |  |  |
| ANNUAL             |                       |                     |  |  |
| OVERHEAD           |                       |                     |  |  |
| COST               | \$1,270,664           | \$908,885           |  |  |
| ANNUAL             |                       |                     |  |  |
| OVERHEAD           |                       |                     |  |  |
| COST/WAFER         |                       |                     |  |  |
| PASS               | \$1.22                | \$0.87              |  |  |
| OVERHEAD           |                       |                     |  |  |
| COST/WAFER         | \$2.44                | \$1.74              |  |  |
| PROCESS            |                       |                     |  |  |
| COST/WAFER         | \$9.33                | \$0.20              |  |  |
| TOTAL              |                       |                     |  |  |
| ANNUAL             |                       |                     |  |  |
| COST/WAFER         | \$11.77               | \$1.94              |  |  |

Net Annual Savings at 10,000 wsw: \$5,111,600



### NF<sub>3</sub> Emission Analysis

1. Gases employed to process 520,000 product wafers<sup>1</sup> (2 passes/wafer)

 $O_2$ : 1,074,320 liters NF<sub>3</sub>: 57,200 liters H<sub>2</sub>N<sub>2</sub>: 44,720 liters

2. Approximate raw exhaust gas composition during process, by volume<sup>2</sup>:

| NF <sub>3</sub> :  | 1.3% | $CO_2$ :         | 0.4%  |
|--------------------|------|------------------|-------|
| HF:                | 0.2% | CO:              | 0.8%  |
| COF <sub>2</sub> : | 0.7% | O <sub>2</sub> : | 96.6% |

3. Using a GWP(Global Warming Potential) of 8,000 for NF<sub>3</sub><sup>3</sup>
Estimated MMTCE (million metric tons carbon equivalent) from NF<sub>3</sub>:
7.5E-5

Based on 52 wafer fabs<sup>4</sup>, MMTC from NF<sub>3</sub>: 3.9E-3 (The Semiconductor Industry generated approx. 1.4 MMTCE in 1996<sup>5</sup>)

- 1. Assuming a 10,000 wafer start/wk fab.
- 2. RGA data taken on production equipment with representative process.
- 3. Source: US EPA, Scott Bartos, SSA Annual Meeting, 2000.
- 4. Assuming 27 million wafers produced in 2000. Source: Rose Associates
- 5. Source: S. Karecki L. Pruette, R. Chatterjee, R. Reif, Alternative Chemistries for Dielectric Etch Processes, 1999.







#### **Process Qualification Normalized Device Yield Results**

| Process          | Yield | Standard<br>Deviation | Number<br>of Lots |
|------------------|-------|-----------------------|-------------------|
| Solvent<br>Clean | 1.0   | 11.56                 | 481               |
| Dry Deveil       | 0.998 | 13.39                 | 170               |







#### Process Qualification 168 Hour Reliability Yield Results

| Split   | 168 Hour Burn-in<br>Failures |  |  |
|---------|------------------------------|--|--|
| Control | 0/197                        |  |  |
| Ulvac   | 0/197                        |  |  |
| Control | 0/80                         |  |  |
| Ulvac   | 0/80                         |  |  |
| Control | 0/100                        |  |  |
| Ulvac   | 0/84                         |  |  |







#### **Process qualification VIA Failure Results**

| PART | TOOL    | LAYER | N LOTS | %KLVN<br>FAIL | %CHAIN<br>FAIL | QBD<br>SHIFT |
|------|---------|-------|--------|---------------|----------------|--------------|
| A    | Solvent | Via 1 | 25     |               | 0.144          | NO           |
|      | Dry     | Via 1 | 19     |               | 0.030          |              |
|      | Solvent | Via 2 | 25     |               | 0.018          | NO           |
|      | Dry     | Via 2 | 19     |               | 0.000          |              |
| С    | Solvent | Via 1 | 25     | 0.027         | 0.000          | NO           |
|      | Dry     | Via 1 | 19     | 0.000         | 0.000          |              |
|      | Solvent | Via 2 | 25     | 0.027         | 0.027          | NO           |
|      | Dry     | Via 2 | 19     | 0.000         | 0.000          |              |
| D    | Solvent | Via 1 | 24     | 0.058         | 0.019          | NO           |
|      | Dry     | Via 1 | 13     | 0.000         | 0.000          |              |
|      | Solvent | Via 2 | 22     | 0.042         | 0.021          | NO           |
|      | Dry     | Via 2 | 9      | 0.000         | 0.000          |              |
| Е    | Solvent | Via 1 | 30     | 0.150         | 0.075          | NO           |
|      | Dry     | Via 1 | 17     | 0.000         | 0.000          |              |
|      | Solvent | Via 2 | 26     | 0.329         | 0.225          | NO           |
|      | Dry     | Via 2 | 13     | 0.216         | 0.036          |              |



#### Summary

• A reliable, cost effective alternative to solvent de-veil processing has been developed.

- Same or improved yield and device performance
- Solvent failure mechanisms have been eliminated
- Process wafer cost is reduced to <15% of the solvent process
- Dry De-veil technology is better for safety and less overall burden to the environment
  - Eliminates hazardous waste disposal
  - Reduces overall DI water consumption
  - Requires less safety equipment
- This via de-veil technology is extendable to other solvent de-veil processes: (i.e. metal etch, poly etch, ion implant, etc.)

