

Medium energy ion scattering studies of ultra-thin gate dielectrics

H. Schulte, B. Busch, S. Sayan, T. Gustafsson, E. Garfunkel

Departments of Chemistry and Physic Rutgers University, Piscataway, New Jersey 08854

Collaborators: Lucent, IBM, NCSU, UT...

Support: SRC, NSF

Profiling method	Positive Aspects	Issues/Problems
SIMS	Depth resolution, mass separation, sensitivity	Ion yield changes Roughening/mixing
RBS	Quantification, mass resolution, Sensitivity (?)	Depth resolution poor Stopping power needed
ERD	<u>like RBS:</u> but good for light elements	Stopping power needed
MEIS	like RBS: but better depth resolution	Stopping power needed
NRA	Quantification, sensitivity mass resolution (?)	Depth profiling requires etchback
Resonance-NRA	Depth resolution, mass resolution (?)	Only for a few isotopes Stopping power needed
AR-XPS	Depth resolution Excellent chemical separation	Need λ's Fitting routine - soon
HRTEM STEM/EELS	True depth calibration, measures structure and composition (w/EELS)	Must work with >20nm slices
FTIR	Chemical sensitivity Can see hydrogen	Must use etchback Calibration standards
Ellipsometry	Easy to perform, non-destructive	Strongly model dependent Requires knowledge of ε_i 's

Medium Energy Ion Scattering (high-resolution RBS)

- Mass (isotope) specific; quantitative total areal density
- sub-nm depth resolution; 100 keV protons used
- electrostatic energy analysis; little beam damage

High resolution electrostatic detector

- Sensitivity: $\approx 10^{+12} \text{ atoms/cm}^2$ (Hf, Zr) $\approx 10^{+14} \text{ atoms/cm}^2$ (C, N)
- Accuracy for determining total amounts:
 - ≈ 5% absolute (Hf, Zr, O)
 ≈ 2% for relative measurements
 ≈ 10% absolute (C, N)
- Depth resolution: (need density of sample)
 - $\approx 3 \text{ Å}$ near surface
 - ≈ 10 Å at depth of 40 Å

[improved by spectral simulation]

Depth resolution in MEIS depth profiling

<u>Basic concept</u>: Depth profile is based on the energy loss of the ions traveling through the film (stopping power $\varepsilon \propto dE/dx \propto L$).

Example: Depth resolution for ≈ 100 keV protons:

Stopping power SiO₂ $\approx 12 \text{ eV/Å}$ Si₃N₄ $\approx 20 \text{ eV/Å}$ Ta₂O₅ $\approx 18 \text{ eV/Å}$ Si $\approx 13 \text{ eV/Å}$

 H^+

exit angle = 35°

L = 2.75 d

• Energy resolution of the spectrometer $\approx 150 \text{ eV}$

• 35° exit angle L = 2.75 d

→ "Near surface" depth resolution \approx 3-5 Å

* Depth resolution becomes worse for deeper layers due to energy straggling ($\propto L^{1/2}$)

Concentration profiles obtained from energy spectra simulations

- Areas under each peak corresponds to the concentration of the element in a 3Å slab
- Peak shapes and positions come from energy loss, energy straggling and instrumental resolution.
- The sum of the contributions of the different layers describes the depth profile.

"Uncertainties" in the MEIS (or RBS) depth profiling analysis:

Issue/uncertainty	What they affect	Solutions
Neutralization ratio for H^+	Absolute concentrations	• Direct measurement by SSD
(or other scattering	(relative concentrations	Reference samples
particle)	are OK)	_
"Stopping power" (energy	"scaling" of the z	Independent measurements
loss) and straggling	(depth) axis;	of thickness by XPS, TEM
parameters of \mathbf{H}^+ in	modeling	Reference samples
material(s)		_
Non-gaussian single scat.	peak shape; modeling,	• Not issue for films >2nm; new
ion energy distribution	especially at the surface	basic theoretical and
and non-statistical		experimental work needed to
number of scat. loss events		address this for <1.5nm films
Film thickness uniformity,	may be confused with	Angular resolved MEIS
roughness and	each other	• Independent measurements by
compositional gradients		TEM, AFM, XPS etc.

Other issues: Substrate/overlayer strain; channeling/blocking yield; shadow cone....

Rutgers ultrathin dielectric films and interfaces group

Past work:

- The SiO₂/Si system: film growth chemistry, interface structure, composition and properties
- SiO_xN_y/Si: nitrogen incorporation chemistry and properties See, for example: E.P. Gusev, H.C. Lu, E. Garfunkel, T. Gustafsson, and M.L. Green, *Growth and Characterization of Ultrathin Nitrided Oxide Films*, IBM Journal of Research and Development, 43 (1999) 265-286; or selections from the edited book: *Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices*, edited by E. Garfunkel, E. Gusev and A. Vul', Kluwer Academic Publishers, 1998.

Current work:

• High-K metal oxide dielectrics: film growth and composition, interface behavior, structure, electrical properties....

Nitridation of 4.5nm SiO₂ on Si by NO; 950°C, 1hr

Final N content: 1.6ML $(1 \text{ ML} = 6.8 \text{ x } 10^{14} \text{ cm}^{-2})$

Nitrogen is located within 1.5nm of interface.

Processes relevant to the thermal oxynitridation of Si

Gas phase decomposition at high T

Short summary of our work on nitrogen chemistry in oxynitrides

- Why nitrogen? diffusion barrier, hot electron degradation, higher ε_k , but...
- MEIS useful for depth profiling 0-5 nm oxynitrides (with >.1ML N).
- N₂O decomposes at reaction temperature: N₂O \Rightarrow N₂ + O \Rightarrow NO
- NO is the active (oxy)nitriding agent and reacts similar to O₂ (as in D-G).
- N is kinetically trapped in the film; oxide is more stable that nitride
- NO and N₂O differ in that: N₂O is an O source which removes N from the film
- N oxynitride layering can be obtained by thermal methods (e.g. NO/O₂/NO)
- Plasma and other non-thermal methods yield higher surface N concentrations

Requirements for a high-K gate dielectric stack

Electrical

- High (>15) dielectric constant (capacitance)
- Low leakage current
- Low concentration of interface state and trapped charge defects
- High channel mobility and reliability

If metal gate electrode:

- thermal stability wrt dielectric
- appropriate barrier height

Physical/material

- high thermal stability; no reaction with substrate Si
- minimal roughness and crystallinity
- minimal interfacial SiO₂
 defects
- low defect concentration; correct stoichiometry

+ integration!!!

Metal oxide reactions on silicon

<u>MEIS spectra of La₂SiO₅ before and after</u> <u>vacuum anneal to 800°C (w/NCSU)</u>

- Annealing up to 800 °C in vacuum shows no significant change in MEIS spectra.
- Surface remains flat by AFM.

MEIS spectra of La₂SiO₅ before and after in-air anneal

- stoichiometry and thickness consistent with other analyses
- 400°C anneal leads to minor broadening of the La, O and Si distributions
- 800°C anneal shows significant SiO₂ growth at interface
- La diffusion towards the Si substrate

MEIS spectra of La_2SiO_5 before and after vacuum anneal to >800 °C

- Annealing to >800 °C in vacuum shows significant change in MEIS spectra. Silicon surface peak grows substantially and La diffuses away from the surface.
- Model is O loss by SiO desorption from film.

Oxygen exchange in 30Å Al_2O_3 annealed in 3 Torr ¹⁸ O_2

- O exchange throughout the Al₂O₃ film. Exchange commences at the surface and moves in deeper.
- Si oxide grows at the interface.

Prep.	Tot. O [ML]	¹⁶ O [ML]	¹⁸ O [ML]
as-dep	35	35	0
400 °C	37	36	1
500 °C	36	33	3
600 °C	41	31	10
700 °C	43	24	19

MEIS results for 30Å as-deposited ZrO₂ annealed in 2 Torr ¹⁸O₂ at 500°C for 5 min. (w/UT)

Some methods to examine oxygen exchange and interfacial SiO₂ growth

2-3 Torr ¹⁸O₂ anneal at T \approx 500 °C for 5 min

Oxide	Thickness [Å]	¹⁸ O/O _{tot}
Al ₂ O ₃	30	0.083
$(Y_2O_3)_x(SiO_2)$) _y 13	0.24
ZrO ₂	30	0.50
HfO ₂	25	0.56

SiO₂ growth at ZrO₂/Si interface during oxygen anneal

- SiO₂ interface growth strongly T-dependent
- SiO_2 growth rate faster than DG-like growth (O_2 on Si).
- No significant pressure or time dependence in Torr, minutes range (implying saturated; try 10⁻⁶ 10⁻³ Torr anneals)
- ZrO₂ presumed to act as O₂ dissociation catalyst and fast ion conductor source of O atoms

Schematic of CVD system

CVD (ALCVD) system is part of a complex UHV system, that includes a thermal processing chamber and XPS analysis.

Growth and properties of CVD-grown HfO₂ films

Growth parameters

Substrate temperature Ts250-450 °CPrecursor temperature25-50 °C (for t-butoxide)Time20-600 s

<u>Analysis</u>

XRD:	Amorphous structure
XPS:	Surface carbon
RBS/MEIS:	Stoichiometric HfO ₂
	Growth rate 1-5 Å/s
AFM:	Surface roughness ≈ 2 Å
Electrical:	Leakage current (acceptable)
	Dielectric constant (18-20)

Various starting surface configurations examined: Si-H, SiO₂, Si₃N₄

$40 \text{ Å} \text{HfO}_2 \text{ grown on HF-cleaned Si}$

45 Å HfO_2 grown on 12 Å SiO_xN_y

- MEIS analysis showed little interfacial SiO₂ and (probable) silicide formation
- Poor electrical characteristics ...

- MEIS analysis showed interfacial SiO₂ and no silicide formation
- Promising electrical characteristics
 ...equivalent SiO₂ thickness ~20Å

Effect of anneal on interface composition for HfO₂/SiO_x/Si system

MEIS depth profiles of as-deposited and vacuum annealed 50\AA HfO₂ films on Si(100). An initial graded Hf-silicate interfacial layer appears to sharpen and form a more stoichiometric SiO₂ phase after annealing. Phase segregation?

Other M-Si-O reactions

$Y_2O_3 + SiO_2$ films (w/NCSU)

- Amount and distribution of Si and Y in the film change for different interface compositions, and growth/anneal conditions.
- N profiles obtained for N₂O processed substrates.

- sputtering ~8 Å of Y onto HF-last Si, followed by oxidation, leads to silicate formation: $(Y_2O_3)/(SiO_2) \sim 3/2$
- metal sputtered onto SiO_xN_y, followed by oxidation, leads to reduced silicate formation SiN is diffusion barrier

MEIS yield change on nitrided sample after 700°C anneal

- Little change in overlayer or interface of Ta₂O₅/SiN/Si sample following 700C anneal.
- SiN interface more stable than SiO interface for TaO_x/Si reactions

ZrO₂ + SiO₂ variable composition "compositionally spread" film on Si (w/Lucent)

- Electrical
- X-Ray diffraction
- RBS, MEIS
- XPS
- AFM, current imaging

Zr%

Zr/(Zr+Si) ratio in the Zr-Si-O sample as determined by XPS (agrees with RBS)

Topographic and scanning current imaging of $5nm Ta_2O_5$ film

- Topographic image (a) flat (150x130nm area); 2-3Å rms roughness.
- Current image (b) for as-deposited film uniform same area as (a): flat background w/~300 femtoamp noise level (at ~3V bias).
- Annealing to 800°C (c) leads to hot spots (nanoamp local current with <2V bias), with no direct correlation to roughening.

Summary

- As-deposited high-K films compositionally graded/layered with SiO₂ at the interface.
- Anneals: some improvements, but ... crystallization, SiO_x growth, phase changes...
- Isotopic labeling studies: significant oxygen exchange.
- SiO₂ interface growth is very T dependent, and appears to be self-limiting. (Challenge is to find P_i, T, t phase space range that optimizes properties.)
- As-deposited high-K films usually flat, but many roughen upon annealing (>800°C).
- Nitride or other barrier layers and alloying slows interdiffusion and recrystallization.

Current work:

CVD, ALCVD, compositional spread methods.... Buffer and graded layers Special H and Al depth profiling Understand defects and breakdown – scanning current imaging Gate metallization – interfaces and offset voltage Theoretical modeling