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Ion yield changes
Roughening/mixing

Depth resolution, mass separation,
sensitivity

SIMS

Strongly model dependent
Requires knowledge of εi’s

Easy to perform, non-destructiveEllipsometry

Must use etchback
Calibration standards

Chemical sensitivity
Can see hydrogen

FTIR

Must work with >20nm slicesTrue depth calibration, measures
structure and composition (w/EELS)

HRTEM
STEM/EELS

Need λ’s
Fitting routine - soon

Depth resolution
Excellent chemical separation

AR-XPS

Only for a few isotopes
Stopping power needed

Depth resolution, mass resolution
(?)

Resonance-NRA

Depth profiling requires etchbackQuantification, sensitivity
mass resolution (?)

NRA

Stopping power neededlike RBS: but better depth resolutionMEIS

Stopping power neededlike RBS: but good for light
elements

ERD

Depth resolution poor
Stopping power needed

Quantification, mass resolution,
Sensitivity (?)

RBS

Issues/ProblemsPositive AspectsProfiling method
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Medium Energy Ion Scattering (high-resolution RBS)
• Mass (isotope) specific; quantitative – total areal density
• sub-nm depth resolution; 100 keV protons used
• electrostatic energy analysis; little beam damage
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• Sensitivity:
≈ 10+12 atoms/cm2 (Hf, Zr)
≈ 10+14 atoms/cm2 (C, N)

• Accuracy for determining total
amounts:
≈ 5% absolute (Hf, Zr, O)
     ≈ 2% for relative measurements
≈ 10% absolute (C, N)

• Depth resolution: (need density of
sample)
≈ 3 Å near surface
≈ 10 Å at depth of 40 Å
[improved by spectral simulation]

High resolution electrostatic detector
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Basic concept:  Depth profile is based on the energy loss of the ions
traveling through the film (stopping power ε ∝  dE/dx ∝  L).

Example:   Depth resolution for ≈ 100 keV protons:

�   Stopping power SiO2  ≈ 12 eV/Å
Si3N4  ≈ 20 eV/Å
Ta2O5  ≈ 18 eV/Å
Si  ≈ 13 eV/Å

�   Energy resolution of the spectrometer ≈ 150 eV

�   35° exit angle L = 2.75 d

� "Near surface" depth resolution ≈ 3-5 Å 

∗   Depth resolution becomes worse for deeper layers due to
energy straggling (∝  L1/2)

d

H + ex it an g le  =  3 5 o

L  =  2 .7 5  d

S U B S T R A T E

Depth resolution in MEIS depth profiling
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Layer m odel:
raw spectrum

5
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layer num bers

Energy, keV3 Å

H +

SUBSTRATE

Layer  1

Layer  2

Layer  3

 … .

Layer  n

• Areas under each peak corresponds to the
concentration of the element in a 3Å slab

• Peak shapes and positions come from
energy loss, energy straggling and
instrumental resolution.

• The sum of the contributions of the
different layers describes the depth profile.

Concentration profiles obtained from energy spectra simulations
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         “Uncertainties” in the MEIS (or RBS) depth profiling analysis:
 

Issue/uncertainty What they affect Solutions 
Neutralization ratio for H+  

(or other scattering 
particle) 

Absolute concentrations 
(relative concentrations 
are OK) 

• Direct measurement by SSD 
• Reference samples 

“Stopping power” (energy 
loss) and straggling 
parameters of H+ in 
material(s) 

“scaling” of the z 
(depth) axis; 
modeling 

• Independent measurements 
of thickness by XPS, TEM... 

• Reference samples 
 

Non-gaussian single scat. 
ion energy distribution 
and non-statistical 
number of scat. loss events

peak shape; modeling, 
especially at the surface 

• Not issue for films >2nm; new 
basic theoretical and 
experimental work needed to 
address this for <1.5nm films 

Film thickness uniformity, 
roughness and 
compositional gradients 

may be confused with 
each other 

• Angular resolved MEIS 
• Independent measurements by

TEM, AFM, XPS etc. 
 

Other issues:  Substrate/overlayer strain; channeling/blocking yield; shadow cone…. 
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Past work:

• The SiO2/Si system: film growth chemistry, interface structure,
composition and properties

• SiOxNy/Si:  nitrogen incorporation chemistry and properties
See, for example: E.P. Gusev, H.C. Lu, E. Garfunkel, T. Gustafsson, and M.L. Green,
Growth and Characterization of Ultrathin Nitrided Oxide Films, IBM Journal of
Research and Development, 43 (1999) 265-286;  or selections from the edited book:
Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by E.
Garfunkel, E. Gusev and A. Vul’, Kluwer Academic Publishers, 1998.

Current work:

• High-K metal oxide dielectrics: film growth and composition,
interface behavior, structure, electrical properties.…

Rutgers ultrathin dielectric films and interfaces group
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Proton Energy, keV

Final N content: 1.6ML
(1 ML = 6.8 x 1014 cm-2)

Nitrogen is located within
1.5nm of interface.

Nitridation of 4.5nm SiO2 on Si by NO; 950ºC, 1hr
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• Why nitrogen? – diffusion barrier, hot electron degradation, higher εεεεk, but…

• MEIS - useful for depth profiling 0-5 nm oxynitrides (with >.1ML N).

• N2O decomposes at reaction temperature: N2O ���� N2 + O ���� NO

• NO is the active (oxy)nitriding agent and reacts similar to O2 (as in D-G).

• N is kinetically trapped in the film; oxide is more stable that nitride

• NO and N2O differ in that: N2O is an O source which removes N from the film

• N oxynitride layering can be obtained by thermal methods (e.g. NO/O2/NO)

• Plasma and other non-thermal methods yield higher surface N concentrations

Short summary of our work on nitrogen chemistry in oxynitrides
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Requirements for a high-K gate dielectric stack

If metal gate electrode:

• thermal stability wrt dielectric
• appropriate barrier height

Electrical
• High (>15) dielectric constant

(capacitance)

• Low leakage current

• Low concentration of interface
state and trapped charge
defects

• High channel mobility and
reliability

Physical/material
• high thermal stability; no

reaction with substrate Si

• minimal roughness and
crystallinity

• minimal interfacial SiO2
defects

• low defect concentration;
correct stoichiometry

+ integration!!!
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Metal oxide reactions on silicon

Si

MSi + SiO2

Si

MO

SiSi

MSi

+ SiO (g)

∆

∆ ∆

Si

SiO2

MO
∆ + Ο2

(MO)x(SiO2)y

∆ + Ο2

Si

MO

∆

a b c

d e f
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O or Si profiles

minor rearrangement
of La upon annealing
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� Annealing up to 800 °C in vacuum shows no significant change in
MEIS spectra.

� Surface remains flat by AFM.

MEIS spectra of La2SiO5 before and after
vacuum anneal to 800ºC (w/NCSU)
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� stoichiometry and thickness
consistent with other analyses

� 400°C anneal leads to minor
broadening of the La, O and Si
distributions

� 800°C anneal shows significant
SiO2 growth at interface

� La diffusion towards the Si
substrate

MEIS spectra of La2SiO5 before and after in-air anneal
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� Annealing to >800 °C in
vacuum shows significant
change in MEIS spectra.
Silicon surface peak grows
substantially and La diffuses
away from the surface.

• Model is O loss by SiO
desorption from film.

MEIS spectra of La2SiO5 before and after
vacuum anneal to >800 °C
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Oxygen exchange in 30Å Al2O3
annealed in 3 Torr 18O2

� O exchange throughout the Al2O3
film. Exchange commences at the
surface and moves in deeper.

� Si oxide grows at the interface.

Prep. Tot. O [M L] 16O [M L] 18O [M L] 
as-dep 35 35 0 
400 oC 37 36 1 
500 oC 36 33 3 
600 oC 41 31 10 
700 oC 43 24 19 
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 MEIS spectra of 30 Å ZrO2 as deposited film,

and annealed in 2 Torr 18O2 at 500 oC for 5 min 
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� No change in Zr distribution
for annealing up to 900 °C.

� Remains flat by AFM after
18O2 anneal.

� high O exchange in the ZrO2
film by 500 °C.

� Si oxide grows at the
interface.

MEIS results for 30Å as-deposited ZrO2 annealed
in 2 Torr 18O2 at 500°C for 5 min. (w/UT)
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Some methods to examine oxygen exchange and interfacial SiO2 growth

   2-3 Torr 18O2 anneal at T ≈500 oC for 5 min
                                  _____________________________________________________

                      Oxide             Thickness [Å]     18O/Otot
                               _____________________________________________________

                      Al2O3                  30    0.083
                      (Y2O3)x(SiO2)y       13    0.24
                      ZrO2                  30    0.50
                      HfO2                  25    0.56
                                  _____________________________________________________
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SiO2 growth at ZrO2/Si interface during oxygen anneal

• SiO2 interface growth strongly T-dependent

• SiO2 growth rate faster than DG-like growth (O2 on Si).

• No significant pressure or time dependence in Torr, minutes
range (implying saturated; try 10-6 - 10-3 Torr anneals)

• ZrO2 presumed to act as O2 dissociation catalyst and fast ion
conductor source of O atoms
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Schematic of CVD system

CVD (ALCVD) system
is part of a complex
UHV system, that
includes a thermal
processing chamber and
XPS analysis.

O2
Hf-
precursor

Si-substrate
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Growth parameters
Substrate temperature TS 250-450 ºC
Precursor temperature 25-50 ºC (for t-butoxide)
Time 20-600 s

Analysis
XRD:          Amorphous structure
XPS: Surface carbon
RBS/MEIS: Stoichiometric HfO2
            Growth rate 1-5 Å/s
AFM: Surface roughness ≈ 2 Å
Electrical: Leakage current (acceptable)

Dielectric constant (18-20)

Growth and properties of CVD-grown HfO2 films

Various starting surface configurations examined:  Si-H, SiO2, Si3N4
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40 Å HfO2 grown on HF-cleaned Si
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45 Å HfO2 grown on 12 Å SiOxNy

• MEIS analysis showed interfacial
SiO2 and no silicide formation

• Promising electrical characteristics
…equivalent SiO2 thickness ~20Å

• MEIS analysis showed little interfacial
SiO2 and (probable) silicide formation

• Poor electrical characteristics …
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MEIS depth profiles of as-deposited
and vacuum annealed 50Å HfO2
films on Si(100).  An initial graded
Hf-silicate interfacial layer appears
to sharpen and form a more
stoichiometric SiO2 phase after
annealing. Phase segregation?

Effect of anneal on interface composition for HfO2/SiOx/Si system
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Other M-Si-O reactions

Si

SiO2

Si

 (MO)x(SiO2)y

Silicide

Silicon dioxide + metal
oxide; nano-phase
segregation

Si

MO+SiO2

Si

MxSiv

- SiO(g)MO

Silicon dioxide + metal
oxide; layered phase
segregation

Si

M

+ O2 (g) +∆

+∆

Silicate



 Rutgers – MEIS group

• sputtering ~8 Å of Y onto HF-last Si,
followed by oxidation, leads to silicate
formation:  (Y2O3)/(SiO2) ~ 3/2
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• metal sputtered onto SiOxNy, followed by
oxidation, leads to reduced silicate
formation – SiN is diffusion barrier
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Y2O3 + SiO2 films (w/NCSU)

• Amount and distribution of Si and Y in the film change for
different interface compositions, and growth/anneal conditions.

• N profiles obtained for N2O processed substrates.
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MEIS yield change on nitrided
sample after 700°C anneal

• Little change in
overlayer or interface
of Ta2O5/SiN/Si
sample following
700C anneal.

• SiN interface more
stable than SiO
interface for TaOx/Si
reactions
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ZrO2 + SiO2 variable composition
“compositionally spread” film on Si (w/Lucent)

• Electrical
• X-Ray diffraction
• RBS, MEIS
• XPS
• AFM, current imaging

Zr%

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Position
Zr

/(Z
r+

Si
)

Zr/(Zr+Si) ratio in the Zr-Si-O sample as
determined by XPS (agrees with RBS)
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Mixed ZrO2-SiO2 films.
After anneal to 700ºC.
Thickness: 800Å.
Composition (%Zr):
#0: 92% #1: 79% #2: 57% #3: 33%

Zr-Si-O and Zr-Al-O systems: 
crystallinity and O exchange
vs composition
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Topographic and scanning current imaging of 5nm Ta2O5 film

a b c

• Topographic image (a) flat (150x130nm area); 2-3Å rms roughness.

• Current image (b) for as-deposited film uniform - same area as (a): flat
background w/~300 femtoamp noise level (at ~3V bias).

• Annealing to 800ºC (c) leads to hot spots (nanoamp local current with
<2V bias), with no direct correlation to roughening.



 Rutgers – MEIS group

Summary
• As-deposited high-K films compositionally graded/layered with SiO2 at the interface.

• Anneals: some improvements, but … crystallization, SiOx growth, phase changes…

• Isotopic labeling studies: significant oxygen exchange.

• SiO2 interface growth is very T dependent, and appears to be self-limiting.
(Challenge is to find Pi, T, t phase space range that optimizes properties.)

• As-deposited high-K films usually flat, but many roughen upon annealing (>800ºC).

• Nitride or other barrier layers and alloying slows interdiffusion and recrystallization.

Current work:
CVD, ALCVD, compositional spread methods….
Buffer and graded layers
Special H and Al depth profiling
Understand defects and breakdown – scanning current imaging
Gate metallization – interfaces and offset voltage
Theoretical modeling


