UV-Initiated Surface Preparation and Reaction on Semiconductor Wafer Surfaces

Casey Finstad

cfinstad@engr.arizona.edu

Department of Chemical and Environmental Engineering University of Arizona

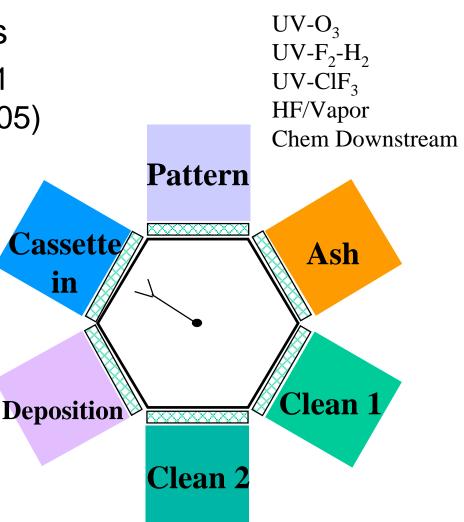

Outline

- UV-initiated surface preparation – UV/Cl₂ metals removal
- Experimental Setup
- UV-initiated surface reactions
 UV-enhanced Atomic Layer Deposition (ALD)
- Summary

Sources of Metallic Contamination

- Photoresist
- Reactive Ion Etching (RIE) (plasma etching)
- Oxygen Ashing
- Replace HPM (SC-2) with UV/Cl₂

SEM of 0.5 µm Feature After RIE


 $CD = 0.5 \ \mu m$ AR = 2.5 HDP Source, post-RIE, before ashing PR / TEOS

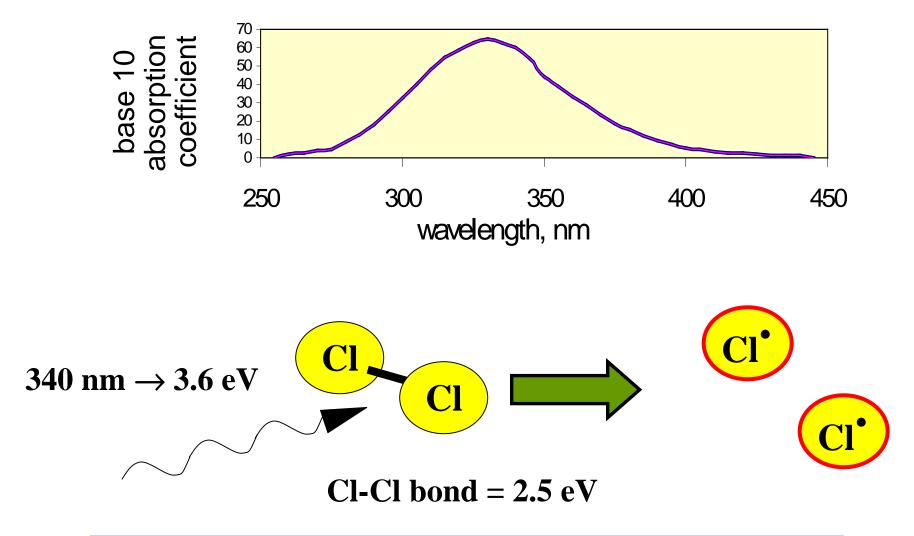
Front End Cleaning Steps

Contaminant	Application	Liquid Phase	Gas Phase
Organics	• Post-RIE	 O₂ Ash 	• UV-O ₃
	• Ion Implant	 SPM (Piranha) 	• UV-Cl ₂
	Rework	 Ozonated Water 	• Moist O ₃
Oxide	 Pre-gate 	• Dilute HF	• HF/vapor
Particles	 Post-CMP 	 APM (SC-1) + megasonics APM (SC-1) + brush scrubbing 	 Cryogenic Aerosol Laser
Metals	 Post-RIE 	• HPM (SC-2)	 UV-O₃ UV-Cl₂

Motivation — UV/Cl₂ Metal Removal

- No surface tension effects
 - Vapors penetrate sub-0.1 micron features (year 2005)
- No contamination from liquid bath
- Cluster tools
 - Wafer protected from atmosphere
 - No worker exposure

ESH Significance —UV/Cl₂ Metal Removal

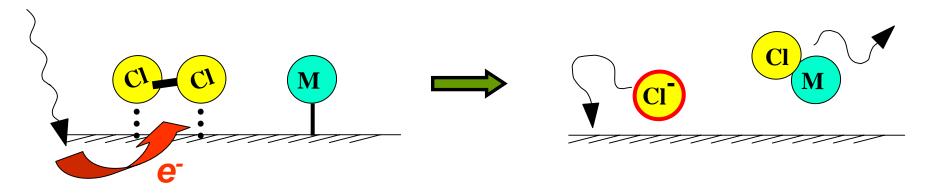

Benefits

- Eliminate aqueous cleans:
 - Reduced consumption of HCI/H₂O₂/H₂O
 - Less liquid waste
 - Conserve UPW
- Reduced worker exposure

Concerns

- New kinds of waste
- Chlorine
- Ultraviolet exposure

Background Information—UV/Cl₂ Metal Removal



Project Objectives—UV/Cl₂ Metal Removal

- Verify UV/Cl₂ as clean
- Removal mechanism
 - "Lift-Off"
 - Volatile products
- Reaction mechanism and products
 - Gas-phase or surface photolysis
 - Substrate and dopants
 - Oxide thickness
 - Contaminant and its concentration
 - Surface termination and other adsorbed species
 - Ultraviolet wavelength
- Monochromatic UV source

Project Objectives—UV/Cl₂ Metal Removal

• UV-initiated surface reactions on Si and SiO₂.

- Relate electron-hole pairs to wavelength and dopant concentration.
- Model system for semiconductor/adsorbate/photon interactions.

International Technology Roadmap for Semiconductors

 Table 21 1999 Short Term Surface Preparation Technology Requirements

Year of Introduction	2001	2002 130 nm	2003	2004	2005 100 nm	
Front End of Line (A)						
Critical surface metals (at/cm ²)	≤6x10 ⁹	≤4.4x10 ⁹	≤3.4x10 ⁹	≤2.9x10 ⁹	≤2.5x10 ⁹	
Metal atoms per Si(100)	1:323,000				1:770,000	
Solutions Exist		Solutions Being		No Known		

Critical Surface Metals: Fe^{1,4},Ca, Co, Cu^{1,3,4}, Cr, K¹, Mo, Mn, Na¹, and Ni^{1,2,4}

Pursued

1. Sugino, et al. 2. Courtney and Lamb 3.Opila, et al. 4. Lawing, et al.

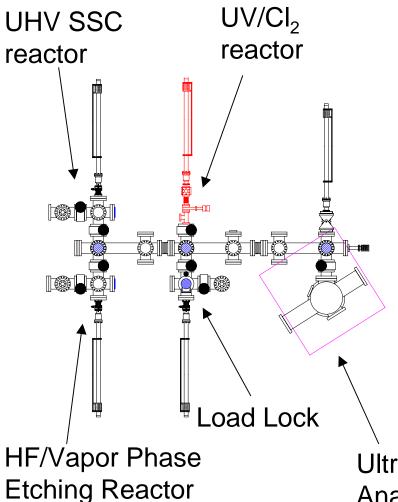

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

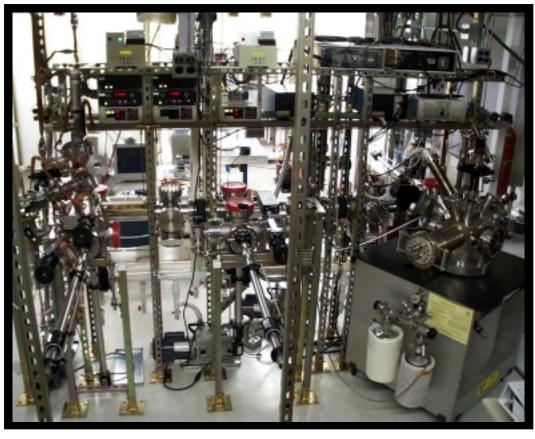
Solution

Thermochemistry

Reaction	ΔG_{rxn} (250°C)	P _{sub} (250°C)
$Cu + Cl(g) \rightarrow CuCl$	-219 kJ/mol	4x10 ⁻⁵ Torr
$Cu + 2Cl(g) \rightarrow CuCl_2$	-322 kJ/mol	4x10 ⁻⁷ Torr
$Cu_2O + 2CI(g) →$ 2CuCl + ½ $O_2(g)$	-307 kJ/mol	4x10 ⁻⁵ Torr
$CuO + CI(g) \rightarrow CuCI + \frac{1}{2}O_2(g)$	-112 kJ/mol	4x10 ⁻⁵ Torr

UV Reactor Schematics

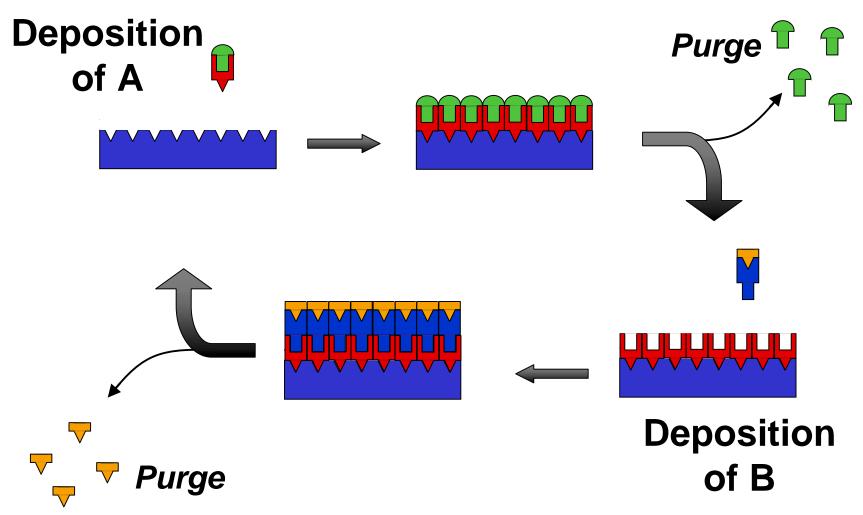

Present Reactor


- Temperature (100 250°C) and pressure (25 - 500 mTorr) controlled
- 15 50 sccm Cl₂ flowrate
- 250-Watt Hg arc lamp

Future Reactor

In-situ Fourier Transform
 Infrared Spectroscopy (FTIR)

Integrated Processing Apparatus



Ultra High Vacuum Surface Analysis Chamber

Outline

- UV-initiated surface preparation – UV/Cl₂ metals removal
- Experimental Setup
- UV-initiated surface reactions
 UV-enhanced Atomic Layer Deposition (ALD)
- Summary

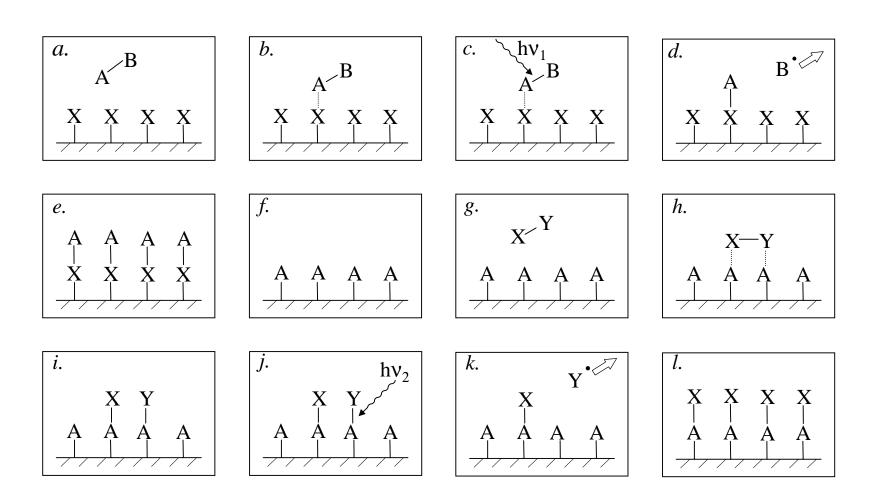
Schematic of Atomic Layer Deposition

UV Atomic Layer Deposition

Thermal ALD

- 1/10th of a layer per cycle
- High temperature Process
 - 500°C
 - processing conflicts
- Pulse and Purge

UV ALD


- 1 layer per cycle
 - Improved deposition rate
- Lower temperature
 - High-K dielectric layers,
 Diffusion barriers

- Reaction triggered by UV illumination.
 - Eliminate pulse-purge cycles
 - Decrease consumption

Project Objectives — UV Atomic Layer Deposition

- Precursor sequences for deposition of ZrO₂
- Reduced processing temperatures
- Mechanisms and kinetic parameters
- Multiple precursors simultaneously
- Resist-free patterning

Possible UV-Enhanced Deposition Sequence

Summary

UV/Cl₂ Metal Removal

- Nickel, copper, iron, sodium, potassium and organic contaminants
- Reaction and removal mechanisms
- Monochromatic light source

UV-Enhanced Atomic Layer Deposition

- Identify and test precursor combinations
- Grow high quality, commercially useful films at low temperature
- Both precursors present simultaneously

Acknowledgements

- Anthony Muscat, Kasi Kiehlbaugh, Gerardo Montaño, Adam Thorseness
- Bob Opila, Lucent Technologies
- Scott Lawing, Rodel
- SRC Graduate Fellowship (C. Finstad)
- Air Products for donation of chlorine gas and regulator
- SRC/NSF Environmentally Benign Semiconductor Manufacturing Center
- NSF Career Award (DMR-9703237)